(: 450) =60491, 1 100-00014 10/16/02 -f h6 NGM: DOMININ Terminal 2.inf

P&A Engineers and Consultants, Inc.

P.O. Box: 470 Alum Creek, W.Va. 25003-0470

Phone (304) 756-4066 Fax (304) 756-4068

October 15, 2002

P.O. Box: 279 Louisa, Ky. 41230

Phone (606) 673-4413 (606) 673-4415

Mr. Dennis Treacy, Director Commonwealth of Virginia Department of Environmental Quality 5636 Southern Boulevard Virginia Beach, VA 23462

Re: Dominion Terminal Associates – Pier 11 Facility AIRS ID 51-700-00074, Registration No. 60997 Air Quality Modification Application

Dear Mr. Treacy:

On behalf of our client, Dominion Terminal Associates, P & A Engineers and Consultants, Inc. submit the attached modification application to the coal/coke storage and export facility for your

review and approval.

The purpose of this modification application is to identify existing and proposed NSPS equipment, as well as additional storage, associated with the production of a synfuel product. The synfuel process consists of coal fines being treated with a binding agent that creates a chemical change and produces an alternate fuel source. As evidenced in the attached MSDS sheets, the proposed binder for the synfuel product is environmentally friendly and contains no VOC's.

Dominion Terminal Associates currently maintains a highly efficient dust suppression system and proposes no change to its operation or current permit requirements in regard to emission controls.

If additional information or clarification is needed, please contact me at the Alum Creek address listed above or call 304-756-4066.

Sincerely, Jana John

TABLE OF CONTENTS

•

Section A Document Certification

Section B General Information

Section C Processing, Manufacturing, Surface Coating and Degreasing Operations – Form 5

Section D Stack Parameters and Fuel Data – Form 11

Section E Air Pollution Control and Monitoring Equipment – Form 12

Section F Air Pollution Control – Supplemental Information – Form 13

Section G Criteria Pollutant Emissions – Form 14

Section H Toxic or Hazardous Emissions From Proposed Facility – Form 15

Section I	Control Device Listing
Section J	Emission Calculations
Section K	Material Flow Diagram – Proposed Facilit
Section L	Site Plan
Section M	Proposed Synfuel Binder

COMMONWEALTH OF VIRGINIA Department of Environmental Quality

AIR PERMIT APPLICATION General information CHECK ALL FORMS THAT APPLY AND LIST ALL ATTACHED DOCUMENTS.

CRITERIA POLLUTANT EMISSIONS, Page 14

PROCESS FLOW DIAGRAM/SCHEMATIC

OPERATING PERIODS, Page 16

LIST ATTACHED DOCUMENTS

MAP of SITE LOCATION

FACILITY SITE PLAN

MSDS or CPDS SHEETS

MAP AND LOCALITIES LIST (information), Pages iii-vi

TOXIC OR HAP OR OTHER EMISSIONS, Page 15

CONFIDENTIAL INFORMATION, Page vii

FORMULA-BASED HAZARDOUS AIR POLLUTANT INFORMATION, Page viii

HAZARDOUS AIR POLLUTANT LIST (information), Pages ix-x

__ REQUEST FOR LOCAL GOVERNMENT CERTIFICATION FORM, Pages xi-xii

CONTENTS AND DOCUMENT CERTIFICATION, Page 1

GENERAL INFORMATION, Page 2

GENERAL INFORMATION (continued), Page 3

___ FUEL-BURNING EQUIPMENT, Page 4

PROCESSING, Page 5

__ INKS, COATINGS, STAINS, AND ADHESIVES, Page 6

__ INCINERATORS, Page 7

- ___ VOLATILE ORGANIC COMPOUND/PETROLEUM STORAGE TANKS, Page 8
- __VOLATILE ORGANIC COMPOUND/PETROLEUM STORAGE TANKS -CONTINUED, Page 9
- LOADING RACKS AND OIL-WATER SEPARATORS, Page 10.

STACK PARAMETERS AND FUEL DATA, Page 11

ESTIMATED EMISSIONS CALCULATIONS _ STACK TESTS

_ AIR MODEL DATA

__LOCAL GOVERNING BODY CERTIFICATION FORM

AIR POLLUTION CONTROL AND MONITORING EQUIPMENT, PAGE 12

Note added form sheets above; also indicate the number of copies of each form in blank provided.

DOCUMENT CERTIFICATION FORM (see other side for instructions)

I certify under penalty of law that this document and all attachments [as noted above] were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering and evaluating the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

SIGNATURE:

NAME:

PRESIBANT

DATE: 10/15/02

NUMBER: 60997

REGISTRATION

Dominion Terminal Associates COMPANY: References: Virginia Regulations, 9 VAC 5-80-10.D.4. See reverse of this form for instructions.

Page Revised April 15, 2002

COMMONWEALTH OF VIRGINIA DEP. IENT OF ENVIRONMENTAL QUALITY AIR PERMIT APPLICATION GENERAL INFORMATION

PERSON COMPLETING FORM	DATE	REGISTRATION NUMBER
Donna J. Toler, Air Quality Project Manager, P & A Engineers and Consultants, Inc.	10-15-02	60997

REASON(S) FOR SUBMISSION:	
OPERATING PERMIT	
RENEWAL OF OPERATING PERMIT	(CURRENT PERMIT EXPIRATION DATE:)
MODIFICATION	THIS PERMIT IS APPLIED FOR PURSUANT TO THE FOLLOWING PROVISION(S) OF THE VIRGINIA
NEW SOURCE	REGULATIONS OR FEDERAL REGULATIONS (IF KNOWN): 9 VAC 5-80-10 (NEW AND MOD. SOURCES)

Would you be interested in a DEQ Pollution Prevention (P2) site visit to discuss the potential benefits of implementing P2 practices at your facility? Please note that there is no charge for this service and that the site visit is not limited to air pollution issues. Site visits can yield air/water pollution or waste minimization recommendations that can benefit your facility. The purpose of these visits is not to assess compliance with applicable regulatory requirements.

If yes, would you prefer the P2 site visit to occur:

COMPANY AND DIVISION NAME:			·····	
Dominion Terminal Associates				
MAILING ADDRESS:				
PO Box 967A, Newport News, VA 2	23607			
TELEPHONE NUMBER:	NUMBER OF EMPOLYEES AT S	SITE:	PROPERTY AREA AT SITE:	
757-245-2275				
EXACT SOURCE LOCATION - INLCUDE NAM	E OF CITY (COUNTY) AND FULL	STREET ADDRE	SS OR DIRECTIONS:	. <u></u>
Pier 11, Harbor Road, Newport News	, VA 23607			
PERSON TO CONTACT ON AIR POLLUTION N	ATTERS - NAME AND TITLE:	PHONE NUME	3ER:	
	275 ext. 307			
DERRIS BRADSHAW, PE		FAX NUMBER	l:	
Plant Engineer		757-247-9	729	

Please check here if you obtained this form from the DEQ website.

	FOR OFFICIAL USE ONL	Υ	
COUNTY CODE:	PLANT ID NUMBER:	UTM NUMBERS:	
.			

COMMONWEALTH OF VIRGINIA DEPARTMENT OF ENVIRONMENTAL QUALITY AIR PERMIT APPLICATION GENERAL INFORMATION (continued)

COMPANY NAME	DATE	REGISTRATION NUMBER
Dominion Terminal Associates	10-15-02	60997

IS THE FACILITY TO BE PERMITTED AS A PORTABLE PLANT?YES ____NO

DESCRIBE THE PRODUCTS MANUFACTURED AND/OR SERVICES PERFORMED AT THIS FACILITY:

Coal and coke handling, storage, and barge loading facility modified to include a synfuel processing plant with storage and loadout of the alternative fuel source.

PRIMARY SIC SECONDARY SICs

PLEASE LIST ALL THE FACILITIES IN VIRGINIA UNDER COMMON OWNERSHIP OR CONTROL BY THE OWNER OF THIS FACILITY:

		 	· · · · · · · · · · · · · · · · · · ·	
	 	 	·	
	 <u></u>	 <u>_</u>		
	 	 ······································		
1				

MILESTONES. This section is to be completed if the permit application includes a new emissions unit or modification to existing operations.

MILESTONES*	STARTING DATE	ESTIMATED COMPLETION DATE
New equipment installation	Upon Permit Approval	Approx. 90 days thereafter
Modification of existing process or equipment		
Start-up dates	January 1, 2003	

* For new or modified installations to be constructed in phased schedule, give construction/installation starting and completion date for each phase.

Page Revised April 15, 2002

Page 2 Instructions

Dominion Terminal Associates Avoids Demurrage, Reduces Inventory Levels and Adheres to Government Regulations Using MRO Software's Strategic Asset Management Solution

Storing and shipping up to 20 million tons of coal peryear is no small feat, especially in light of stringent

environmental and safety regulations and the need for efficient and precise management of many different types of coal. Dominion Terminal Associates (DTA) is a coal shipping and ground storage facility located on the United States' eastern seaboard at Newport News, Virginia. Stretching over 100 acres, DTA receives coal by rail, stores it and then sends it out by ship or coastal barge to its appropriate global destination. Whorly owned by coal-producing and sales companies, DTA operates 24-hours-per-day, 7-days-per-week.

On any given day at DTA, CSX Transportation delivers. trains from eastern coal mines, bringing many types of coal for storage and/or shipping. Once received at DTA, up to 1.7 million tons of coal can be stored at a time, and segregated in storage areas by coal type and shipper.

To meet these maintenance, operational and safety demands, DTA required a world-class asset management solution. DTA found MRO Software's MAXIMO® to be the most costeffective, user-friendly and compatible solution available to meet its needs. DTA planned to create an integrated system that housed all maintenance, repair and operations (MRO) infor-

DTA combines efficient, high-speed coal handling with sophisticated sampling and blending systems. These capabilities, coupled with an impervious surface of storage areas, a system of runoff ditches, chemically balanced holding ponds and a computerized water spray dust suppression system in the storage area, make DTA an environmentally responsible, state-of-the-art facility. After DTA handles, segregates and stores the coal, seagoing and coastal barges and colliers transport. it to its final destinations.

Resulting in the on-time delivery of quality, uncontaminated coal products, DTA's daily round-the-clock effort necessitates worker efficiency, handling precision and well-managed, properly functioning equipment A tandem rotary car dumper, three stacker/reclaimers, nineteen belt conveyors with over four miles of belting,

mation in one place. In addition, DTA needed to maintain safety and performance, reduce inventory and labor costs and improve the overall efficiency of the terminal. DTA has used MAXIMO since 1996 to address these needs.

"DTA places major emphasis on reliability, efficiency and safety," commented Dan Wagoner, Maintenance Superintendent for DTA. "MAXIMO plays a very significant role in our achieving those objectives."

"MAXIMO helps us track and maintain almost 5,000 pieces of equipment -- all of which are essential to our daily operations," said Zach Howard, MAXIMO Administrator for DTA. "At our terminal, when even one piece of equipment goes down, it puts a burden on our whole operation. The MAXIMO preventive maintenance (PM) functionality has optimized our equipment performance and helped streamline operations."

Results: Goals: Equipment history in MAXIMO allowed DTA to Reduce inventory levels ----predict needed parts and immediately reduce

metal detectors, mechanical samplers and magnetic

separators are only a few of the many pieces of equip-

ment that must be operating optimally to ensure that

DTA meets its goals. In addition, DTA must adhere to

air and water regulations imposed by the state and tederal agencies.

Meet government regulations

Effectively allocate

labor resources

inventory levels by approximately five percent

DTA leverages MAXIMO and easily adheres to the latest environmental regulations

MAXIMO's visibility into DTA's labor requirements allows them to accurately forecast labor, and ensure that resources are available to complete mission critical jobs

Dominion Terminal Associates Customer Profile

One of DTA's primary goals in implementing MAXIMO was to optimize equipment performance through consistent monitoring and maintenance. Inefficient maintenance of the equipment that handles the coal can delay or stop shipping, resulting in costly downtime. Using MAXIMO to generate PM reports at scheduled intervals, DTA effectively monitors the performance of its equipment and ensures. that repairs are made in a strategic manner. For example, DTA regularly checks the components of all of its conveyor drives. If a drive fails, then operations would essentially shut down while the repairs. were being made. The damage would result in significant downtime. and hefty repair costs. DTA avoids emergency repairs by regularly conducting PM routines to check the drives. This ounce of prevention allows DTA to realize significant savings as they reduce equipment downtime and improve the overall operation of the terminal. Every month, DTA also runs a MAXIMO report that outlines the number of emergency work orders for each piece of equipment. With these reports DTA identifies and replaces the equipment that is causing the greatest amount of downtime, resulting in increased uptime.

as the supervisor quickly identifies and orders the correct part without having to type in the information," commented Wagoner. "The equipment history in MAXIMO also allows us to predict how much inventory we are going to need, which saves us money as we were able to reduce our inventory levels by approximately five percent."

MAXIMO also helps DTA's Controller monitor the Company's expen-

"Downtime in our world also makes the threat of demurrage, a fee that we pay if we do not dump cars and load vessels in a timely manner, a reality. Demurrage fees can quickly run into very high costs," explained Wagorier. "MAXIMO helps us avoid unnecessary downditures. At any given time, she can access a report that outlines the materials issued in and out of inventory and the general ledger (GL) account code charged. These real time numbers help management keep their fingers on the pulse of the organization's spending patterns, ensuring that the departments do not exceed the budget.

MAXIMO's labor functionality helps DTA organize labor into five areas of expertise, streamline the work assignment process and monitor the effectiveness of how they allocate the labor resources. The MAXIMO data enables DTA to identify trends based on an analysis of the type of work being done and hours spent doing each activity.

"This visibility into our labor requirements allows us to more accurately forecast labor to make sure that people are available to complete mission critical jobs," added Wagoner. "Operating time is where we make our money, and MAXIMO helps us make sure that we have enough people available to complete this job."

time and eliminate demurrage fees."

DTA also used MAXIMO to streamline its inventory tracking system. Using MAXIMO, DTA minimized labor time and costs associated with finding and ordering parts. For example, a materials control supervisor can access MAXIMO's inventory module to search for and reorder specific pieces of equipment. MAXIMO checks the availability of the needed materials from internal sources first, and then if the part is not in stock the supervisor can automatically create a purchase requisition without typing the part in the system.

"MAXIMO not only saves us money as it makes sure that we do not order a part that we already have in stock, but it also saves us labor time. In addition, MAXIMO enabled DTA to remain in compliance with the latest government-imposed environmental requirements. With so much coal being handled, DTA is responsible for making sure the environment is not subject to harmful contamination. MAXIMO generates preventive maintenance work orders for regular water and air testing, and ensures that the appropriate controls are properly working. Work orders that require immediate attention due to safety concerns receive the highest priority in the MAXIMO system.

"MAXIMO streamlined the operations of DTA's entire terminal. Because we run on a 24 x 7 schedule, MAXIMO is critical to ensuring that all of our parts, equipment and labor are working at the highest optimization," continued Wagoner. "With MAXIMO, we now use our MRO information strategically to improve business efficiencies, save money and maintain the highest environmental and safety standards."

Corporate Headquarters	Asia	Australia and New Zealand	Europe, Middle East, Africa	Latin America
MRO Software, Inc.	MRO Software Hong Kong Ltd.	MRO Software Australia Pty.	(EMEA)	MRO Software, Inc.
100 Crosby Drive	ph +852-2166-8760	Limited	MRO Software	ph 305-267-8820
Bedford, MA 01730	fax +852-2166-8555	ph +61-2-9463-7734	ph +44-1-483-727000	fax 305-264-8853
ph 800-244-3346		fax +61-2-9957-2669	fax +44-1-483-727979	
fax 770-481-3071				

Copyright 2002 MRC Software, Inc. All rights reserved. MAAIMO is a registered tridemark and MRO Software is a trademark of MRO Software. Inc.

60997 EGISTRATION NUMBER

. . AXIMUM EXPECTED FEED INPUT

*
Ē
Ĕ
S
õ
Ë
G
5
E E
ŵ
ξ
ž
X

UTPUT * *	YEAR	6,132,000	6,132,000	6,132,000	6,132,000	6,132,000	6,132,000	
IM EXPECTED FEED C	λΥ	16,800	16,800	16,800	16,800	16,800	16,800	
XIML								

attach appropriate intermediates and by-products;

be based on historical high or attach justification. cess schematic) relating process steps and a narrative description including feed materials, product materials, reaction erials used or consumed and products manufactured or handled. For modification codes see next page. Specify units for each operation in Tons, Pounds, Gallons, etc., as applicable.

FORM 7

S	Į
2	I
	I
0	Į
-	I
	l
	1
~	ł
	I
щ	ł
Q	ł
\mathbf{O}	I
$\mathbf{\nabla}$	Į
65	I
$\mathbf{\Sigma}$	1
Z	ľ
	I

	DATE 10-15-0	2
ACTURER AND IF KNOWN; OF EQUIPMENT	MAXIMUM RATED CAPACITY 'HR**	H H
ble-roll crusher	1000	200
ble-roll crusher	1000	200
ole deck screen	700	200
le deck screen	700	700
ole deck screen	700	002
le deck screen	700	700

Maximum Expected Feed Input for state operating permits shall

AND DEGREAS COATING SURFACE PROCESSING, MANUFACTURING,

As **Jal** i. Ter iníon

COMPANY	NAME Dominion Terminal Asso	ciate	
		200	
NNT NG.	PROCESS OR OPERATION NAME* (PROVIDE MANUFACTURE OR CONSTRUCTION DATE)	ОООш	EQUIPMENT MANU MODEL NUMBER OTHERWISE, TYPE
CR-1	Crusher	4	Fully-enclosed dou
CR-2	Crusher	4	Fully-enclosed dou
SS-1	Screen	4	Fully-enclosed dou
SS-2	Screen	4	Fully-enclosed sing
SS-3	Screen	4	Fully-enclosed dou
SS-4	Screen	4	Fully-enclosed sing

materials Include flow diagram (pro MSDS or CPDS for raw mate *

Page Revised April 15, 2002

FORM 7

be based on historical high or attach justification.

intermediates and by-products; attach appropriate Include flow diagram (process schematic) relating process steps and a narrative description including feed materials, product materials, reaction MSDS or CPDS for raw materials used or consumed and products manufactured or handled. For modification codes see next page.

INPUT **	DUTPUT **	Maximum Thruput YEAR	24.000.000	24,000,000	24,000,000	24,000,000	12,264,000	2,000	12,264,000
UM EXPECTED FEED	M EXPECTED FEED (ΛAΥ							
AXIM	AXIMU								

	1
S.	l
Z	I
0	I
F	ł
٦	
a	Į
Ш	ł
F	ļ
U	ł
G	Į
Z	

60997

1.1

	DATE 10-15-02	REGISTR/	ATION NUMBER
		MAXIMU	M EXPECTED E
		MAXIMUN	A EXPECTED FEE
FACTURER AND 3, IF KNOWN; OF EQUIPMENT	MAXIMUM STORAGE CAPACITY HR**	H	, DAY
itorage	350,000 tons		
Storage	40,000 tons		
Storage	50 tons		
Storage	20,000 tons		

Maximum Expected Feed Input for state operating permits shall Specify units for each operation in Tons, Pounds, Gallons, etc., as applicable.

AND DEGREAS SURFACE COATING PROCESSING, MANUFACTURING,

Dominion Terminal Associates

COMPANY NAME

	ΣοΔ	
I OPERATION NAME* MANUFACTURE OR RUCTION DATE)	ООС	EQUIPMENT MANUFA MODEL NUMBER, I OTHERWISE, TYPE OF
Stockpile #1	0	Material Sto
Stockpile #2	0	Material Sto
Stockpile #3	0	Material Sto
Stockpile #4	0	Material Sto
Stockpile #5	4	Material Sto
Stockpile #5	4	Material Sto
Stockpile #7	4	Material Sto

PROCESS OR (PROVIDE M CONSTR Open Open Open Open Open Open Open **OS-5** 0S-6 **0S-7 OS-2 OS-3 OS-4 OS-1** UNIT Ref. Ň. *

COMPANY	NAME Dominion Terminal Asso	NCIATES	ALING AND DEGREADING OFERALIONS	DATE 10-15-02	REGISTR	ATION NUMBER 60	7997
		Σ			MAXIML	JM EXPECTED FEED II	NPUT **
					MAXIMUI	M EXPECTED FEED OI	UTPUT * *
NO. NO.	PROCESS OR OPERATION NAME* (PROVIDE MANUFACTURE OR CONSTRUCTION DATE)	<u>ы о о п</u>	EQUIPMENT MANUFACTURER AND MODEL NUMBER, IF KNOWN; OTHERWISE, TYPE OF EQUIPMENT	MAXIMUM STORAGE CAPACITY HR**	Æ	ΡΑΥ	YEAR
BS-1	Storage Silo #1	0	Fully-enclosed w/baghouse	1,000 tons	2,740	65,753	24,000,000
BS-2	Storage Silo #2	0	Fully-enclosed w/baghouse	3,800 tons	2.740	65.753	24.000.000
BS-3	Stoarge Silo #3	•	Fully-enclosed w/baghouse	4,100 tons	2 740	65 7 5 3 7 5 3	000 000 000
	Plant #1		Fully-enclosed with water/chemical				
407	Feed Bin	4	solution	DC tons	700	16,800	6,132,000
BS-5	Plant #1 Pugmill Bin	4	Fully-enclosed in building	5 tons	700	16,800	6, 132,000
BS-O	Pugmill Feed Bin	4	Fully-enclosed in building	5 tons	700	16,800	6,132,000
BS-7	Plant #2 Feed Bin	4	Fully-enclosed with water/chemical solution	So tons	700 7	16,800	6, 132,000
BS-8	Plant #2 Pugmill Bin	4	Fully-enclosed in building	5 tons	002	16,800	6,132,000
BS-9	Pugmill Feed Bin	4	Fully-enclosed in building	5 tons	700	16,800	6,132,000

FORM 7

S

2002

ß

Ξ

0

ব

ed

<u>vis</u>

Ð

а;

Page

_

ciate.	٥o	сосш	0	0	ο	4	4	4	4	4	4	
NAME Dominion Terminal Asso		PROCESS OR OPERATION NAME* (PROVIDE MANUFACTURE OR CONSTRUCTION DATE)	Storage Silo #1	Storage Silo #2	Stoarge Silo #3	Plant #1 Feed Bin	Plant #1 Pugmill Bin	Pugmill Feed Bin	Plant #2 Feed Bin	Plant #2 Pugmill Bin	Pugmilt Feed Bin	
COMPANY		NNT NG.	BS-1	BS-2	BS-3	BS-4	BS-5	BS-6	BS-7	BS-8	BS-9	

PROCESS	ING, MANUFACTURING, SURFA	CE CO	ATING AND DEGREASING OPERATION	IS:	<u> </u>	
COMPAN	Y NAME Dominion Terminal Asso	ciates		DATE10-15-02	REGIST	RATION NU
		M O D			MAXIM	
UNIT REF. NO.	PROCESS OR OPERATION NAME* (PROVIDE MANUFACTURE OR CONSTRUCTION DATE)	C O D E	EQUIPMENT MANUFACTURER AND MODEL NUMBER, IF KNOWN; OTHERWISE, TYPE OF EQUIPMENT	MAXIMUM RATED CAPACITY _/HR**	/HR	
BC-1	Rotary Dump Discharge Belt	0	Fully-enclosed belt conveyor	6800	2,740	65,7
BC-2	Silo #1 Feed Belt	0	Fully-enclosed belt conveyor	6800	2,740	65,7
BC-3	Silo #1 Discharge Belt	0	Fully-enclosed belt conveyor	6800	2,740	65,7
BC-4	Stockpile Feed Belt	0	Belt conveyor(yard)	6800	2,740	65,
BC-5	CC/Coke Transfer Belt	0	Fully-enclosed belt conveyor	6800	2,740	65,
BC-6	CC/Coke Transfer Belt	0	Fully-enclosed belt conveyor	6800	2,740	65,
BC-7	Stockpile Feed Belt	0	Belt conveyor(yard)	6800	2,740	65,

* Include flow diagram (process schematic) relating process steps and a narrative description including feed materials, reaction intermediates and by-products; attach appropriate MSDS or CPDS for raw materials used or consumed and products manufactured or handled. For modification codes see next page.

** Specify units for each operation in Tons, Pounds, Gallons, etc., as applicable. Maximum Expected Feed Input for state operating permits shall be based on historical high or attach justification.

Page Revised April 15, 2002

JMBER 60997

TED FEED I	NPUT * *
ED FEED O	UTPUT * *
/DAY	/YEAR
	i
753	24,000,000
753	24,000,000
753	24 000 000
/ 00	24,000,000
750	24.000.000
/53	24,000,000
753	24,000,000
	· · · · · · · · · · · · · · · · · · ·
753	24,000,000
753	24,000,000

PROCESSING, MANUFACTURING, SURFACE COATING AND DEGREASING OPERATIO

OMPANY	NAME Dominion Terminal Asso	clates		DATE10-15-02	REGIST		0997
		M O D			MAXIMU	UM EXPECTED FEED	
UNIT REF. NO.	PROCESS OR OPERATION NAME* (PROVIDE MANUFACTURE OR CONSTRUCTION DATE)	C O D E	EQUIPMENT MANUFACTURER AND MODEL NUMBER, IF KNOWN; OTHERWISE, TYPE OF EQUIPMENT	MAXIMUM RATED CAPACITY /HR**	_/HR	/DAY	/YEAF
BC-8	CC/Coke Transfer Belt	0	Fully-enclosed belt conveyor	6800	2,740	65,753	24,000,00
BC-9	CC/Coke Transfer Belt	0	Fully-enclosed belt conveyor	6800	2,740	65,753	24,000,00
BC-10	Loadout Belt	0	Fully-enclosed belt conveyor	6800	2,740	65,753	24,000,00
BC-11	Silo Transfer Belt	0	Fully-enclosed belt conveyor	6800	2,740	65,753	24.000.00
BC-12	Silo Transfer Belt	0	Fully-enclosed belt conveyor	6800	2 740	85 753	24 000 00
BC-13	Stockpile Reversing Belt	0	Belt conveyor(yard)	6800	2 740	65 753	24,000,00

* Include flow diagram (process schematic) relating process steps and a narrative description including feed materials, reaction intermediates and by-products; attach appropriate MSDS or CPDS for raw materials used or consumed and products manufactured or handled. For modification codes see next page.

** Specify units for each operation in Tons, Pounds, Gallons, etc., as applicable. Maximum Expected Feed Input for state operating permits shall be based on historical high or attach justification.

Page Revised April 15, 2002

<u> ЛиЭ:</u>

PROCESSING, MANUFACTURING, SURFACE COATING AND DEGREASING OPERATIONS:

COMPANY NAME Dominion Terminal Associates

UNIT REF. NO.	PROCESS OR OPERATION NAM (PROVIDE MANUFACTURE O CONSTRUCTION DATE)
BC-14	Clean Coal Stockpile Fe Belt
BC-15	Crusher Feed Belt
BC-16	Screen Oversize Belt
BC-17	Plant Feed Belt
BC-18	Pugmill Bin Feed Belt
BC-19	Pugmill Mixer Feed Bel
BC-20	Pug Mixer Discharge Be

* Include flow diagram (process schematic) relating process steps and a narrative description including feed materials, reaction intermediates and by-products; attach appropriate MSDS or CPDS for raw materials used or consumed and products manufactured or handled. For modification codes see next page.

Page Revised April 15, 2002

	M O D	
ON NAME* TURE OR DATE)	C O D E	EQUIPMENT MANUFACTURER AND MODEL NUMBER, IF KNOWN; OTHERWISE, TYPE OF EQUIPMENT
oile Feed	4	Fully-enclosed belt conveyor
Belt	4	Fully-enclosed belt conveyor
e Beit	4	Fully-enclosed belt conveyor
Belt	4	Fully-enclosed belt conveyor
d Belt	4	Fully-enclosed belt conveyor
ed Belt	4	Fully-enclosed belt conveyor
rge Belt	4	Fully-enclosed belt conveyor

 DATE 10-15-0	2	REGISTR	
		MAXIMU	
DATE 10-15-0		/HR	/DAY
6800	68(00	33,600
1500	14	00	33,600
100	0.2	23	5.48
700	70)0	16,800
700	70)0	16,800
700	70)0	16,800
700	70)0	16,800

PECTED FEED INPUT * *							
ECTED FEED O	UTPUT * *						
/DAY	/YEAR						
33,600	12,264,000						
33,600	12,264,000						
5.48	2,000						
16,800	6,132,000						
16,800	6,132,000						
16,800	6,132,000						
16,800	6,132,000						

PROCESSING MANIFACTURING SURFACE COATING AND DEGREASING OPERATIONS:

	<u>Ma, MAROLACTORNA, JON A</u>					
COMPANY	NAME Dominion Terminal Asso	DATE 10-15-02	REGIST	RATION NUMBE		
		M			MAXIM	UM EXPECTED
		D			MAXIMU	M EXPECTED F
UNIT REF. NO.	PROCESS OR OPERATION NAME* (PROVIDE MANUFACTURE OR CONSTRUCTION DATE)	C O D E	EQUIPMENT MANUFACTURER AND MODEL NUMBER, IF KNOWN; OTHERWISE, TYPE OF EQUIPMENT	MAXIMUM RATED CAPACITY _/HR**	/HR	/DAY
BC-21	Spreader Belt	4	Fully-enclosed belt conveyor	700	700	16,800
BC-22	Briquetter Discharge Belt	4	Fully-enclosed belt conveyor	233	233	5,600
BC-23	Briquetter Discharge Belt	4	Fully-enclosed belt conveyor	233	233	5,600
BC-24	Briquetter Discharge Belt	4	Fully-enclosed belt conveyor	233	233	5,600
BC-25	Screen SS-2 Feed Belt	4	Fully-enclosed belt conveyor	700	700	16,800
BC-26	Recirculating Belt	4	Fully-enclosed belt conveyor	100	0.23	5.48
BC-27	Screen SS-2 Discharge Belt	4	Fully-enclosed belt conveyor	700	700	16,800

* Include flow diagram (process schematic) relating process steps and a narrative description including feed materials, reaction intermediates and by-products; attach appropriate MSDS or CPDS for raw materials used or consumed and products manufactured or handled. For modification codes see next page.

** Specify units for each operation in Tons, Pounds, Gallons, etc., as applicable. Maximum Expected Feed Input for state operating permits shall be based on historical high or attach justification.

Page Revised April 15, 2002

MBER 60997

FED FEED INPUT **

ED FEED OUTPUT * * /DAY /YEAR **BOO** 6,132,000 00 2,044,000 **600** 2,044,000 600 2,044,000 800 6,132,000 48 2,000 _____

FORM 7

6,132,000

PROCESSING. MANUFACTURING. SURFACE COATING AND DEGREASING OPERATIONS:

COMPANY	COMPANY NAME Dominion Terminal Associates				DATE 10-15-02 REGISTRATION NUMBER 60997				
					MAXIMUM EXPECTED FEED INPUT * *				
		O D			MAXIMU	M EXPECTED FEED C	OUTPUT + +		
UNIT REF. NO.	PROCESS OR OPERATION NAME* (PROVIDE MANUFACTURE OR CONSTRUCTION DATE)	C O D E	EQUIPMENT MANUFACTURER AND MODEL NUMBER, IF KNOWN; OTHERWISE, TYPE OF EQUIPMENT	MAXIMUM RATED CAPACITY /HR**	/HR	/DAY	/YEAR		
BC-28	Synfuel Stacking Belt	4	Fully-enclosed belt conveyor	Fully-enclosed belt conveyor 700		16,800	6,132,000		
BC-29	Screen SS-3 Oversize Belt	4	Fully-enclosed belt conveyor	100	,23	5.48	2,000		
BC-30	Plant Feed Belt	4	Fully-enclosed belt conveyor	700	700	16.800	6.132.000		
BC-31	Pugmill Bin Feed Belt	4	Fully-enclosed belt conveyor	700	700	16,800	6,132,000		
BC-32	Pugmill Mixer Feed Belt	4	Fully-enclosed belt conveyor	700	700	16,800	6,132,000		
BC-33	Pug Mixer Discharge Belt	4	Fully-enclosed belt conveyor	700	700	16,800	6,132,000		
BC-34	Spreader Belt	4	Fully-enclosed belt conveyor	700	700	16,800	6,132,000		

* Include flow diagram (process schematic) relating process steps and a narrative description including feed materials, product materials, reaction intermediates and by-products; attach appropriate MSDS or CPDS for raw materials used or consumed and products manufactured or handled. For modification codes see next page.

** Specify units for each operation in Tons, Pounds, Gallons, etc., as applicable. Maximum Expected Feed Input for state operating permits shall be based on historical high or attach justification.

Page Revised April 15, 2002

PROCESSING MANUFACTURING SURFACE COATING AND DEGREASING OPERATIONS:

COMPANY	NAME Dominion Terminal Asso	ociates		DATE 10-15-02	REGIST	RATION NUMBER 6	0997		
					MAXIM	MAXIMUM EXPECTED FEED INPUT**			
		D D			MAXIMU	M EXPECTED FEED (OUTPUT * *		
UNIT REF. NO.	PROCESS OR OPERATION NAME* (PROVIDE MANUFACTURE OR CONSTRUCTION DATE)	C O D E	EQUIPMENT MANUFACTURER AND MODEL NUMBER, IF KNOWN; OTHERWISE, TYPE OF EQUIPMENT	MAXIMUM RATED CAPACITY /HR**	/HR	/DAY	YEAR		
BC-35	Briquetter Discharge Belt	4	Fully-enclosed beit conveyor	233	233	5,600	2,044,000		
BC-36	Briquetter Discharge Belt	4	Fully-enclosed belt conveyor	233	233	5,600	2,044,000		
BC-37	Briquetter Discharge Belt	4	Fully-enclosed belt conveyor	233	233	5 600	2.044.000		
BC-38	Screen SS-4 Feed Belt	4	Fully-enclosed belt conveyor	700	700	16,800	6,132,000		
BC-39	Recirculating Belt	4	Fully-enclosed belt conveyor	100	0.23	5,48	2,000		
BC-40	Screen SS-4 Discharge Belt	4	Fully-enclosed belt conveyor	700	700	16.800	6.132.000		
BC-41	Synfuel Stacking Belt	4	Fully-enclosed belt conveyor	700	700	16,800	6,132,000		

* Include flow diagram (process schematic) relating process steps and a narrative description including feed materials, reaction intermediates and by-products; attach appropriate MSDS or CPDS for raw materials used or consumed and products manufactured or handled. For modification codes see next page.

** Specify units for each operation in Tons, Pounds, Gallons, etc., as applicable. Maximum Expected Feed Input for state operating permits shall be based on historical high or attach justification.

Page Revised April 15, 2002

PROCESSING, MANUFACTURING, SURFACE COATING AND DEGREASING OPERATI

COMPANY	NAME Dominion Terminal Asso	ciates		DATE 10-15-02	REGIST		
		M O D			MAXIMUM EXPECTED FEED		
UNIT REF. NO.	PROCESS OR OPERATION NAME* (PROVIDE MANUFACTURE OR CONSTRUCTION DATE)	C O D E	EQUIPMENT MANUFACTURER AND MODEL NUMBER, IF KNOWN; OTHERWISE, TYPE OF EQUIPMENT	MAXIMUM RATED CAPACITY /HR**	ſHR	/DAY	
BC-42	Synfuel Product Transfer Belt	0	Fully-enclosed belt conveyor	1500	1,400	33,600	
BC-43	CC/RC Transfer Belt	0	Fully-enclosed belt conveyor	6800	2,740	65,753	
BC-44	CC/RC Transfer Belt	0	Fully-enclosed belt conveyor	6800	2,740	65,753	
BC-45	CC/RC Transfer Belt	0	Fully-enclosed belt conveyor	6800	2,740	65,753	
BC-46	CC/RC Transfer Belt	0	Fully-enclosed belt conveyor	6800	2,740	65,753	
BC-47	CC/RC Transfer Belt	0	Fully-enclosed belt conveyor	6800	2.740	65.753	
8C-48	CC/RC Transfer Belt	0	Fully-enclosed belt conveyor	6800	2,740	65,753	

* Include flow diagram (process schematic) relating process steps and a narrative description including feed materials, product materials, reaction intermediates and by-products; attach appropriate MSDS or CPDS for raw materials used or consumed and products manufactured or handled. For modification codes see next page. ** Specify units for each operation in Tons, Pounds, Gallons, etc., as applicable. Maximum Expected Feed Input for state operating permits shall be based on historical high or attach justification.

IONS:	
-------	--

UMBER 60997

PECTED FEED INPUT * *								
PECTED FEED O	UTPUT * *							
/DAY	/YEAR							
<u></u>								
33,600	12,264,000							
65,753	24,000,000							
65,753	24,000,000							
65,753	24,000,000							
65,753	24,000,000							
65,753	24,000,000							
65,753	24,000,000							

STACK PARAMETERS AND FUEL DATA: Not Applicable

COMPANY NAME Dominion Terminal Associates

			VEN	T/STACK O	R EXHAUST D	ATA		· · · · · · · · · · · · · · · · · · ·	FL	JEL(S) DATA		
UNIT REF. NO.	VENT/ STACK NO.	VENT/ STACK CONFIG. (USE CODE K)	VENT STACK HEIGHT (feet)	EXIT DIA. (feet)	EXIT GAS VELOCITY (fpm)	EXIT GAS VOLUME (acfm)	EXIT GAS TEMP. ("F)	TYPE OF FUEL	MAX. RATED BURNED/ HOUR (SPECIFY UNITS)	MAX. EXPECTED BURNED/ DAY (SPECIFY UNITS)	MAX. EXPECTED BURNED/ YEAR (SPECIFY UNITS)	HE V (SI U
						· · · · · ·						
								· 				

Code K - Vent/Stack Configuration

- 1. Unobstructed vertical discharge
- 2. Obstructed vertical discharge (e.g., raincap)
- 3. Horizontal or downward discharge (e.g., T-stack)
- 99. Other (specify)

 <u> </u>		 	·
DATE	10-15-02	REGISTRAT	

JMBER 60997

IGHER ATING ALUE PECIFY NITS)	MAX. % SULFUR	MAX. % ASH
	1	i

COMPANY NAME Dominion Terminal Associates

	M					ION CONTROL	EQUIPMENT		MONIT
	D						% EFFICI		
UNIT REF. NO.	C O D E	VENT/ STACK NO.	DEVICE REF. NO.	POLLUTANT/PARAMETER (See Instructions)	MANUFACTURER AND MODEL NUMBER	TYPE (USE CODE L)	DESIGN	ACTUAL	SP POL
0 S-1	0	Fugitive	SW-CS	TSP/PM-10	Open Stockpile No. 1	099	99	99	Existin
OS-2	0	Fugitive	SW-CS	TSP/PM-10	Open Stockpile No. 2	099	99	99	Existin
OS-3	0 Fugitive SW-CS TSP/PM-10		TSP/PM-10	Open Stockpile No. 3	099	99	99	Existin	
OS-4	0	Fugitive	SW-CS	TSP/PM-10	Open Stockpile No. 4	099	99	99	Existin
OS-5	4	Fugitive	SW-CS	TSP/PM-10	Open Stockpile No. 5	099	99	99	Existin
OS-6	4	Fugitive	SW-CS	TSP-PM-10	Open Stockpile No. 6	099	99	99	Existin
OS-7 Code L - A	4	Fugitive	SW-CS	TSP/PM-10 MENT TYPE	Open Stockpile No. 7	099	99	99	Existin
1. Settli 2. Cyclo 3. Multi 4. Cyclo 5. Orific 6. Mech 7. Vent (a) fix (b) va 8. Mist	ing Cha one icyclon one scru hanical ce scru hanical ced thro ariable elimina	amber amber abber scrubber ubber oat throat ator		9. Ele 10. Fil 11. Ca 12. Dir	ctrostatic Precipitator (a) hot side (b) cold side (c) high voltage (d) low voltage (d) low voltage (e) single stage (f) two stage (g) other (specify) ter (a) baghouse (b) other (specify) stalytic Afterburner rect Flame Afterburner		13. A 14. A 15. C	BSORBER (a) packed (b) spray t (c) tray to (d) venturi (e) other (s DSORBER (a) activat (b) molecu (c) activat (c) activat (d) silica g (e) other (spec	tower ower wer specify) ed carbon lar sieve ed alumina el specify) cify)

DATE 10-15-02

REGISTRATION NUMBER 60997

TORING INSTRUMENTATION
PECIFY TYPE, MEASURED LUTANT, AND RECORDER USED
ng PM10 Monitor
1g PM10 Monitor

99. Other Water sprays w/chemical solution, as needed

COMPANY NAME Dominion Terminal Associates

	м					ION CONTROL	EQUIPMENT		MONITORING INSTRUMENTATION	
	O D						% EFFICIE			
UNIT REF. NO.	C O D E	VENT/ STACK NO.	DEVICE REF. NO.	POLLUTANT/PARAMETER (See instructions)	MANUFACTURER AND MODEL NUMBER	TYPE (USE CODE L)	DESIGN	ACTUAL	SPECIFY TYPE, MEASURED POLLUTANT, AND RECORDER USED	
CR-1	4	Source	CS-FC	TSP/PM-10 - OPACITY	Double-Roll Crusher	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9	
CR-2	4	Source	CS-FC	TSP/PM-10 - OPACITY	Double Roll Crusher	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9	
SS-1	4	Source	CS-FC	TSP/PM-10 - OPACITY	Double Deck Screen	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9	
SS-2	4	Source	CS-FC	TSP/PM-10 - OPACITY	Single Deck Screen	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9	
SS-3	4	Source	CS-FC	TSP/PM-10 - OPACITY	Double Deck Screen	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9	
SS-4	4	Source	CS-FC	TSP/PM-10 - OPACITY	Single Deck Screen	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9	
Code L - Al	R POL	LUTION CON	TROL EQUIP	MENT TYPE						
1. Settli	ng Cha	mber		9. Elec	trostatic Precipitator		13. A	BSORBER		
2. Cyclo 2. Multi	ne	•			(a) not side (b) cold side			(a) packed (b) sprav to	tower	
4. Cvclo	ne scr	ubber			(c) high voltage			(c) trav tov	ver	
5. Orific	e scru	bber			(d) low voltage			(d) venturi		
6. Mech	anical	scrubber			(e) single stage			(e) other (s	pecify)	
7. Ventu	iri scru	ibber			(f) two stage		14. A	14. ADSORBER		
(a) fix: (b) vo	ed thro	broot		10 Eilt.	(g) other (specify)			(a) activate	nd carbon Lar sieve	
(D) Val 8 Mist		nroal Nor			a) baohouse			(D) MOIOCUIAR SIEVE (c) activated alumina		
U . mildt				(b) other (specify)				el al		
	11. Cat				1. Catalytic Afterburner (specify)				pecify)	
				12. Dire	ect Flame Afterburner	15. Condenser (specify)				
							99. O	ther – <i>Full Enc</i>	losure w/chemical solution, as neede	

DATE 10-15-02

REGISTRATION NUMBER 60997

*Partially enc. discharge w/chemical solution, as neede

СОМРА	NY N	AME Do	minion Te	erminal Associates		DATE	10-15-02	REGISTE	TRATION NUMBER 60997	
	м				AIR POLLUT	ION CONTROL	EQUIPMENT		MONITORING INSTRUMENTATION	
	D D						% EFFICI			
UNIT REF. NO.	C O D E	VENT/ STACK NO.	DEVICE REF. NO.	POLLUTANT/PARAMETER (See instructions)	MANUFACTURER AND MODEL NUMBER	TYPE (USE CODE L)	DESIGN	ACTUAL	SPECIFY TYPE, MEASURED POLLUTANT, AND RECORDER USED	
BS-1	0	Fugitive	SW-FE	TSP/PM-10 - OPACITY	Storage Silo #1	99/10a	100	100	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9	
BS-2	0	Fugitive	SW-FE	TSP/PM-10 - OPACITY	Storage Silo #2	99/10a	100	100	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9	
BS-3	0	Fugitive	SW-FE	TSP/PM-10 - OPACITY	Storage Silo #3	99/10a	100	100	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9	
BS-4	4	Fugitive	SW-FE	TSP/PM-10 - OPACITY	Plant #1 Feed Bin	99	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9	
BS-5	4	Fugitive	SW-FE	TSP/PM-10 - OPACITY	Plant #1 Pugmill Feed Bin	99	100	100	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9	
BS-6	4	Fugitive	SW-FE	TSP/PM-10 - OPACITY	Plant #2 Pugmill Bin	99	100	100	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9	
BS-7	4	Fugitive	SW-FE	TSP/PM-10 - OPACITY	Plant #2 Feed Bin	99	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9	
BS-8	4	Fugitive	SW-FE	TSP/PM-10 - OPACITY	Plant #2 Pugmill Feed Bin	99	100	100	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9	
BS-9	4	Fugitive	SW-FE	TSP/PM-10 - OPACITY	Plant #2 Pugmill Bin	99	100	100	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9	

as needed

AIR POLL	UTIO	N CONTR	OL AND M	IONITORING EQUIPMENT:) 			<u> </u>		
COMPA	NY N	IAME Do	minion Te	erminal Associates		DATE	10-15-02	REGISTR	ATION NUMBER 60997	
	M					ON CONTROL			MONITORING INSTRUMENTATION	
	D						% EFFICI			
UNIT REF. NO.	C O D E	VENT/ STACK NO.	DEVICE REF. NO.	POLLUTANT/PARAMETER (See instructions)	MANUFACTURER AND MODEL NUMBER	TYPE (USE CODE L)	DESIGN	ACTUAL	SPECIFY TYPE, MEASURED POLLUTANT, AND RECORDER USED	
BC-1	0	TP-03	TC-FC	TSP/PM-10 - OPACITY	Rotary Dump Discharge Belt	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9	
BC-2	0	TP-04	TC-BH	TSP/PM-10 - OPACITY	Silo #1 Feed Belt	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9	
BC-3	0	TP-06	TC-FC	TSP/PM-10 - OPACITY	Silo #1 Discharge Belt	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9	
BC-4	0	TP-07	LO-FC	TSP/PM-10 - OPACITY	Stockpile Feed Belt	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9	
BC-5	0	TP-09	TC-FC	TSP/PM-10 - OPACITY	CC/Coke Transfer Beit	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9	
BC-6	0	TP-12	TC-FC	TSP/PM-10 - OPACITY	CC/Coke Transfer Belt	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9	
Code L - A	IR POL	LUTION CON	ITROL EQUIP	MENT TYPE						
1. Settli 2. Cyclo 3. Multi	ng Cha one cyclon	e e		9. Elec	ctrostatic Precipitator (a) hot side (b) cold side (c) high voltage		13. ABSORBER (a) packed tower (b) spray tower			
4. Cyclone scrubber 5. Orifice scrubber 6. Mechanical scrubber 7. Mechanical scrubber			(d) low voltage (e) single stage (f) two stage	(d) venturi (e) other (specify)						
(a) fixed throat (b) variable throat			10. Filt	(g) other (specify) ter (a) bachouse	(a) activated carbon (b) molecular sieve					
8. Mist eliminator				11. Ca 12. Dir	(b) other (specify) talytic Afterburner ect Flame Afterburner	(c) activated alumina (d) silica gel (e) other (specify) 15. Condenser (specify)				

•

•

39. Other (rull enclosures w/chemical solution, as neede

*Partially-enc. discharge w/chemical solution, as neede

FORM 7

•

AIR	POL	LUT.	ION	CON	TROL	AND	MON
			·				

СОМРА	NYN	IAME Do	minion Te	erminal Associates		DATE	10-15-02	REGISTR	GISTRATION NUMBER 60997	
	Μ					N CONTROL	EQUIPMENT		MONITORING INSTRUMENTATION	
	O D						% EFFICI	INCY		
UNIT REF. NO.	C O D E	VENT/ STACK NO.	DEVICE REF. NO.	POLLUTANT/PARAMETER (See instructions)	MANUFACTURER AND MODEL NUMBER	TYPE (USE CODE L)	DESIGN	ACTUAL	SPECIFY TYPE, MEASURED POLLUTANT, AND RECORDER USED	
BC-7	0	TP-13	LO-RC	TSP/PM-10 - OPACITY	Stockpile Feed Belt	099	98	98	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9	
BC-8	0	TP-80	TC-FC	TSP/PM-10 - OPACITY	CC/Coke Transfer Belt	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9	
BC-9	0	TP-81	ТС-ВН	TSP/PM-10 - OPACITY	CC/Coke Transfer Belt	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9	
BC-10	0	TP-87	LO-CS	TSP/PM-10 - OPACITY	Loadout Belt	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9	
BC-11	0	TP-84	ТС-ВН	TSP/PM-10 - OPACITY	Silo Transfer Belt	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9	
BC-12	0	TP-86	TC-FC	TSP/PM-10 - OPACITY	Silo Transfer Belt	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9	
BC-13	0	TP-78	TC-FC	TSP/PM-10 - OPACITY	Stockpile Reversing Belt	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9	

1. Settling Chamber

2. Cyclone

3. Multicyclone

4. Cyclone scrubber

5. Orifice scrubber

6. Mechanical scrubber

7. Venturi scrubber

(a) fixed throat

(b) variable throat

8. Mist eliminator

ITORING FOLIPMENT.

9. Electrostatic Precipitator

- (a) hot side
- (b) cold side
- (c) high voltage
- (d) low voltage
- (e) single stage
- (f) two stage
- (g) other (specify)
- 10. Filter
 - (a) baghouse
 - (b) other (specify)
- 11. Catalytic Afterburner
- 12. Direct Flame Afterburner

13. ABSORBER

(a) packed tower

(b) spray tower

(c) tray tower

(d) venturi

(e) other (specify)

15. Condenser (specify) 99. Other Full enclosures with chemical solutions, as needed *Partially enc. discharge w/chemical solution, as needed

COMPANY NAME Dominion Terminal Associates

			*		<u></u>	<u> </u>		<u></u>	r	
	м					N CONTROL	EQUIPMENT		MONITORING INSTRUMENTATION	
	O D						% EFFICIE			
UNIT REF. NO.	C O D E	VENT/ STACK NO.	DEVICE REF. NO.	POLLUTANT/PARAMETER (See instructions)	MANUFACTURER AND MODEL NUMBER	TYPE (USE CODE L)	DESIGN	ACTUAL	SPECIFY TYPE, MEASURED POLLUTANT, AND RECORDER USED	
BC-14	4	TP-16	TC-PC	TSP/PM-10 - OPACITY	Clean Coal Stockpile Feed Beit	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation - Method 9	
BC-15	4	TP-18	TC-FC	TSP/PM-10 - OPACITY	Crusher Feed Belt	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9	
BC-16	4	TP-21	TC-FC	TSP/PM-10 - OPACITY	Crusher Feed Belt	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9	
BC-17	4	TP-24	TC-PC	TSP/PM-10 - OPACITY	Screen SS-1 Oversize Belt	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9	
BC-18	4	TP-27	TC-PC	TSP/PM-10 - OPACITY	Screen SS-1 Discharge Belt	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9	
BC-19	4	TP-28	TC-FC	TSP/PM-10 - OPACITY	Pugmill Bin Feed Belt	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9	
BC-20	4	TP-30	TC-FC	TSP/PM-10 - OPACITY	Pugmill Mixer Feed Belt	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9	
Code L - Al	R POL	LUTION CON	TROL EQUIP	MENT TYPE			10 4			
1. Settin	ng Una ng	amber		9, E10	ctrostatic Precipitator					
3 Multiz	velop	9			(b) cold side			(h) enrav to		
4 Cvelo	na ser	ubber			(b) cold slue (c) high voltage			(c) trav tow	Ver	
5 Orifice scrubber					(d) low voltage		(d) venturi			
6. Mechanical scrubber					(e) single stage		(e) other (specify)			

- 7. Venturi scrubber (a) fixed throat
- (b) variable throat
- 8. Mist eliminator

- (f) two stage
- (g) other (specify)
- 10. Filter
 - (a) baghouse
 - (b) other (specify)
- 11. Catalytic Afterburner
- 12. Direct Flame Afterburner

DATE 10-15-02

REGISTRATION NUMBER 60997

- 14. ADSORBER
 - (a) activated carbon
 - (b) molecular sieve
 - (c) activated alumina
 - (d) silica gel
 - (e) other (specify)
- 15. Condenser (specify)
- 99. Other Full Enclosures w/chemical solution, as needed

COMPANY NAME Dominion Terminal Associates

		·				···	·				
	Μ				AIR POLLUTIC	ON CONTROL	EQUIPMENT		MONITORING INSTRUMENTATION		
	O D						% EFFICIE				
UNIT REF. NO.	C O D E	VENT/ STACK NO.	DEVICE REF. NO.	POLLUTANT/PARAMETER (See instructions)	MANUFACTURER AND MODEL NUMBER	TYPE (USE CODE L)	DESIGN	ACTUAL	SPECIFY TYPE, MEASURED POLLUTANT, AND RECORDER USED		
BC-21	4	TP-32	TC-FC	TSP/PM-10 - OPACITY	Pugmill Mixer Discharge Belt	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9		
BC-22	4	TP-33- 36-39	TC-FC	TSP/PM-10 - OPACITY	Spreader Belt	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9		
BC-23	4	TP-35	TC-FC	TSP/PM-10 - OPACITY	Briquetter Discharge Belt	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9		
BC-24	4	TP-38	TC-FC	TSP/PM-10 - OPACITY	Briquetter Discharge Belt	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9		
BC-25	4	TP-41	TC-FC	TSP/PM-10 - OPACITY	Briquetter Discharge Belt	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9		
BC-26	4	TP-42	TC-FC	TSP/PM-10 - OPACITY	Screen SS-2 Feed Belt	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9		
Code L - Al	r Pol	LUTION CON	TROL EQUIP	MENT TYPE							
1. Settlin 2. Cyclo 3. Multic 4. Cyclo	ng Cha ne γclon ne scr	amber e ubber		9. Elec	etrostatic Precipitator (a) hot side (b) cold side (c) high voltage		13. ABSORBER (a) packed tower (b) spray tower (c) tray tower				
5. Orifice scrubber 6. Mechanical scrubber 7. Venturi scrubber					(d) fow voltage (e) single stage (f) two stage		(d) venturi (e) other (specify) 14. ADSORBER				
(a) fixed throat (b) variable throat 8. Mist eliminator				10. Filt	(g) other (specity) 10. Filter (a) baghouse			(a) activated carbon (b) molecular sieve (c) activated alumina			
11. Cata 12. Dire					(b) other (specify) Italytic Afterburner rect Flame Afterburner 99. Other (specify) 99. Other (specify)			pecify) ify) F ull Enclosures w/chemical solution. .			
							nooda	d .			

DATE 10-15-02

<u>uaanan</u>

* Partially-enclosed discharge w/chemical solution, as needed

REGISTRATION NUMBER 60997

•

COMPANY NAME Dominion Terminal Associates

	м							·	MONIT
	O D						% EFFICI	ENCY	
UNIT REF. NO.	C O D E	VENT/ STACK NO.	DEVICE REF. NO.	POLLUTANT/PARAMETER (See Instructions)	MANUFACTURER AND MODEL NUMBER	TYPE {USE CODE L}	DESIGN	ACTUAL	SPI POLI
BC-27	4	TP-43	TC-FC	TSP/PM-10 - OPACITY	Recirculating Belt	099	99	99	Existin Visual Metho
BC-28	4	TP-45	TC-FC	TSP/PM-10 - OPACITY	Screen SS-2 Discharge Belt	099	99	99	Existin Visual Metho
BC-29	4	TP-46	TC-PC	TSP/PM-10 - OPACITY	Synfuel Stacking Belt	099	99	99	Existin Visual Metho
BC-30	4	TP-49	TC-FC	TSP/PM-10 - OPACITY	Crusher Feed Belt	099	99	99	Existin Visual Metho
BC-31	4	TP-52	TC-FC	TSP/PM-10 - OPACITY	Screen SS-3 Oversize Belt	099	99	99	Existin Visual Metho
BC-32	4	TP-55	TC-FC	TSP/PM-10 - OPACITY	Plant Feed Belt	099	99	99	Existin Visual Metho
BC-33	4	TP-56	TC-FC	TSP/PM-10 - OPACITY	Pugmill Bin Feed Belt	099	99	99	Existin Visual Metho
1. Settli 2. Cyclo 3. Multi 4. Cyclo 5. Orific 6. Mech 7. Ventu (a) fix (b) va 8. Mist	ng Cha one cyclon one scr one scrut anical uri scrut ed thro riable t elimina	e ubber bber scrubber ubber at throat		9. Ele 10. Fil 11. Ca	ctrostatic Precipitator (a) hot side (b) cold side (c) high voltage (d) low voltage (e) single stage (f) two stage (g) other (specify) ter (a) baghouse (b) other (specify) stalytic Afterburner		13. A 14. A	BSORBER (a) packed (b) spray to (c) tray to (d) venturi (e) other (s DSORBER (a) activate (b) molecu (c) activate (d) silica ge (e) other (s	tower ower wer specify) ed carbon lar sieve ed alumina el specify)
				12. Di	rect Flame Afterburner		15. C	ondenser (spec	xifγ)

DATE 10-15-02

REGISTRATION NUMBER 60997

TORING INSTRUMENTATION ECIFY TYPE, MEASURED LUTANT, AND RECORDER USED g PM10 Monitor and **Opacity Evaluation**é b ng PM10 Monitor and Opacity Evaluation-

1.

ng PM10 Monitor and Opacity Evaluationng PM10 Monitor and Opacity Evaluation-

d 9

ng PM10 Monitor and **Opacity Evaluation**d 9

ng PM10 Monitor and **Opacity Evaluation**d 9

ng PM10 Monitor and **Opacity Evaluationd** 9

99. Other Full Enclosures w/chemical solution, as needed

COMPANY NAME Dominion Terminal Associates

	М					ON CONTROL	EQUIPMENT		MONITORING INSTRUMENTATION			
	O D						% EFFICIE					
UNIT REF. NO.	C O D E	VENT/ STACK NO.	DEVICE REF. NO.	POLLUTANT/PARAMETER (See instructions)	MANUFACTURER AND MODEL NUMBER	TYPE (USE CODE L)	DESIGN	ACTUAL	SPECIFY TYPE, MEASURED POLLUTANT, AND RECORDER USED			
BC-34	4	TP-58	TC-FC	TSP/PM-10 - OPACITY	Pugmill Mixer Feed Belt	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9			
BC-35	4	TP-60	TC-FC	TSP/PM-10 - OPACITY	Pugmill Mixer Discharge Belt	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9			
BC-36	4	TP-61- 64-67	TC-FC	TSP/PM-10 - OPACITY	Spreader Belt	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9			
BC-37	4	TP-63	TC-FC	TSP/PM-10 - OPACITY	Briquetter Discharge Belt	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9			
BC-38	4	TP-66	TC-FC	TSP/PM-10 - OPACITY	Briquetter Discharge Belt	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9			
BC-39	4	TP-69	TC-FC	TSP/PM-10 - OPACITY	Briquetter Discharge Belt	099	99	99	Existing PM10 Monitor and Visual Opacity Evaluation- Method 9			
Code L - Al	r Pol	LUTION CON	TROL EQUIP	MENT TYPE								
1. Settli	ng Cha	imber		9. Elec	strostatic Precipitator		13. AI	BSORBER				
2. Cyclo	ne				(a) hot side			(a) packed	tower			
3. Multic	cyclon	9			(b) cold side			(b) spray to	ower			
4. Cycło	ne scr	ubber			(c) high voltage			(c) tray tov	ver			
5. Orific	e scrui				(d) low voltage			(a) venturi	nadifici			
O, IVIECH Z. Montu	anical	scrupper			(e) single stage (f) two stage		1Λ Δ		μθοπγ/			
(a) fix	nt sore	nat			(a) other (specify)			(a) activate	d carbon			
(b) vai	iable t	hroat		10. Filt				(a) activated carbon (b) molecular sieve				
8. Mist e	elimina	tor			(a) baghouse		(c) activated alumina					
					(b) other (specify)			(d) silica ge	ca gel			
				11. Ca	talytic Afterburner			(e) other (s	(specify)			
				12. Dir	ect Flame Afterburner		15. Co	ondenser (spec	ify)			
							99. Ot	ther (specify)	Full Enclosures w/chemical solution,			

DATE 10-15-02

- <u>needed</u>

<u>needed</u>

REGISTRATION NUMBER 60997

_____ _____

* Partially-enclosed discharge w/chemical solution, as

COMPANY NAME Dominion Terminal Associates

M					ON CONTROL	EQUIPMENT		MONIT
D D						% EFFICI	ENCY	
C O D E	VENT/ STACK NO.	DEVICE REF. NO.	POLLUTANT/PARAMETER (See instructions)	MANUFACTURER AND MODEL NUMBER	TYPE (USE CODE L)	DESIGN	ACTUAL	SPE POLL
4	TP-70	TC-FC	TSP/PM-10 - OPACITY	Screen SS-4 Feed Belt	099	99	99	Existin Visual Method
4	TP-71	LO-FC	TSP/PM-10 - OPACITY	Recirculating Belt	099	99	99	Existing Visual Method
4	TP-73	TC-FC	TSP/PM-10 - OPACITY	Screen SS-4 Discharge Belt	099	99	99	Existing Visual Method
4	TP-74	TC-PC	TSP/PM-10 - OPACITY	Synfuel Stacking Belt	099	99	99	Existin Visual Method
4	TP76	TC-FC	TSP/PM-10 - OPACITY	Stockpile Loadout Transfer Belt	099	99	99	Existin Visual Method
	M O D C O D E 4 4 4 4	М О D VENT/ E STACK NO. 4 TP-70 4 TP-71 4 TP-73 4 TP-74 4 TP-74	M O D VENT/ DEVICE E STACK REF. NO. NO. 4 TP-70 TC-FC 4 TP-71 LO-FC 4 TP-73 TC-FC 4 TP-74 TC-PC 4 TP-76 TC-FC	M O D VENT/ E STACK NO. VENT/ DEVICE E STACK NO. NO. POLLUTANT/PARAMETER (See instructions) 4 TP-70 TC-FC TSP/PM-10 - OPACITY 4 TP-73 TC-FC TSP/PM-10 - OPACITY 4 TP-74 TC-FC TSP/PM-10 - OPACITY 4 TP-74 TC-FC TSP/PM-10 - OPACITY 4 TP-74 TC-FC TSP/PM-10 - OPACITY 4 TP-76 TC-FC TSP/PM-10 - OPACITY	M Air PolLUTIC O D C O O D VENT/ DEVICE E STACK NO. NO. (See instructions) AND MODEL NUMBER 4 TP-70 TC-FC TSP/PM-10 - OPACITY Screen SS-4 Feed Belt 4 TP-71 LO-FC TSP/PM-10 - OPACITY Recirculating Belt 4 TP-73 TC-FC TSP/PM-10 - OPACITY Screen SS-4 Discharge Belt	M AIR POLLUTION CONTROL O D C TYPE O VENT/ D VENT/ O POLLUTANT/PARAMETER MANUFACTURER CODE AIR POLLUTION CONTROL CODE AIR POLLUTION CONTROL OPA 4 TP-70 TC-FC TSP/PM-10 - OPACITY Synfuel Stacking Belt O99 4 TP-74 TC-FC </td <td>M Air PollUTION CONTROL EQUIPMENT 0 </td> <td>M Air Pollution Control Equipment 0 </td>	M Air PollUTION CONTROL EQUIPMENT 0	M Air Pollution Control Equipment 0

CODE L - AIR POLLUTION CONTROL EQUIPMENT TYPE

- 1. Settling Chamber
- 2. Cyclone
- 3. Multicyclone
- 4. Cyclone scrubber
- 5. Orifice scrubber
- 6. Mechanical scrubber
- 7. Venturi scrubber (a) fixed throat
- (b) variable throat
- 8. Mist eliminator

9. Electrostatic Precipitator

- (a) hot side
- (b) cold side
- (c) high voltage
- (d) low voltage
- (e) single stage
- (f) two stage
- (g) other (specify)
- 10. Filter
 - (a) baghouse
 - (b) other (specify)
- 11. Catalytic Afterburner
- 12. Direct Flame Afterburner

DATE 10-15-02

REGISTRATION NUMBER 60997

13. ABSORBER

- (a) packed tower
- (b) spray tower
- (c) tray tower
- (d) venturi
- (e) other (specify)
- 14. ADSORBER
 - (a) activated carbon
 - (b) molecular sieve
 - (c) activated alumina
 - (d) silica gel
 - (e) other (specify)
- 15. Condenser (specify)
- needed

ORING INSTRUMENTATION ECIFY TYPE, MEASURED LUTANT, AND RECORDER USED PM10 Monitor and **Opacity Evaluation**d 9 PM10 Monitor and **Opacity Evaluation-**PM10 Monitor and **Opacity Evaluation**g PM10 Monitor and **Opacity Evaluation**g PM10 Monitor and **Opacity Evaluation-**19

99. Other Full Enclosures w/chemical solution, as needed * Partially-enclosed discharge w/chemical solution, as

COMPANY NAME Dominion Terminal Associates

	м				AIR POLLUT	ION CONTROL	EQUIPMENT	<u> </u>	MONIT
	O D						% EFFICI	INCY	
UNIT REF. NO.	C O D E	VENT/ STACK NO.	DEVICE REF. NO.	POLLUTANT/PARAMETER (See instructions)	MANUFACTURER AND MODEL NUMBER	TYPE (USE CODE L)	DESIGN	ACTUAL	SPI POLI
BC-45	4	TP-89	TC-FC	TSP/PM-10 - OPACITY	Coal Transfer Belt	099	99	99	Existin Visual Methor
BC-46	4	TP-91	TC-FC	TSP/PM-10 - OPACITY	Coal Transfer Belt	099	99	99	Existin Visual Metho
BC-47	4	TP-92	TC-FC	TSP/PM-10 - OPACITY	Coal Transfer Belt	099	99	99	Existin Visual Metho
BC-48	4	TP-93	TC-FC	TSP/PM-10 - OPACITY	Coal Transfer Belt	099	99	99	Existin Visual Metho
Code L - Al	R POL	LUTION CON	ITROL EQUIP	PMENT TYPE					

- 1. Settling Chamber
- 2. Cyclone
- 3. Multicyclone
- 4. Cyclone scrubber
- 5. Orifice scrubber
- 6. Mechanical scrubber
- 7. Venturi scrubber (a) fixed throat
- (b) variable throat
- 8. Mist eliminator

9. Electrostatic Precipitator

- (a) hot side
- (b) cold side
- (c) high voltage
- (d) low voltage
- (e) single stage
- (f) two stage
- (g) other (specify)

10. Filter

- (a) baghouse
- (b) other (specify)
- 11. Catalytic Afterburner
- 12. Direct Flame Afterburner

DATE 10-15-02

REGISTRATION NUMBER 60997

13. ABSORBER

- (a) packed tower
- (b) spray tower
- (c) tray tower
- (d) venturi
- (e) other (specify)
- 14. ADSORBER
 - (a) activated carbon
 - (b) molecular sieve
 - (c) activated alumina
 - (d) silica gel
 - (e) other (specify)
- 15. Condenser (specify)

needed

needed

ORING INSTRUMENTATION
CIFY TYPE, MEASURED
UTANT, AND RECORDER
USED
a PM10 Monitor and
Opacity Evaluation-
g PM10 Monitor and
Opacity Evaluation-
g PM10 Monitor and
Opacity Evaluation-
g PM10 Monitor and
Opacity Evaluation-

99. Other (specify) Full Enclosures w/chemical solution, i

*Partially-enclosed discharge w/chemical solution, as

AIR POLLUTION CONTROL EQUIPMENT - SUPPLEMENTAL INFORMATION: SEE ATTACHED

COMPANY NAME Dominion Terminal Associates

DEVICE REF. NO. SEE ATTA CONTROL	TYPE (Use Code L) CHED DEVIC	LIQUID FLOW RATE(gpm) (Codes 4,5, 6,7,13,15) BAGHOUSE E SHEETS	LIQUID MEDIUM (Codes 4,6,6,7, 13,15) AIR POLLU	CLEANING METHOD (Codes 9, 10,13,14)	NUMBER OF FIELDS (Code 9)	NUMBER OF SECTIONS {Codes 9,10}	AIR- TO- CLOTH RATIO (fpm) (Code 10)	FILTER MATERIAL (Code 10)	INLET TEMP (EF)	REGENERATION METHOD & CYCLE TIME (sec) (Code 14)	CHAMBER TEMP. (EF) (Codes 11,12)	RETENTION TIME (sec) (Codes 11,12)	PRESSURE DROP (In. H2O) (if Codes 3,4,5,6,7, 10,13)

Code L - AIR POLLUTION CONTROL EQUIPMENT TYPE

- 1. Settling Chamber
- 2. Cyclone
- 3. Multicyclone
- 4. Cyclone scrubber
- 5. Orifice scrubber
- 6. Mechanical scrubber
- 7. Venturi scrubber (a) fixed throat (b) variable throat
- 8. Mist eliminator

9. Electrostatic Precipitator

- (a) hot side
- (b) cold side
- (c) high voltage
- (d) low voltage
- (e) single stage
- (f) two stage
- (g) other (specify)
- 10. Filter
 - (a) baghouse
 - (b) other (specify)
- 11. Catalytic Afterburner
- 12. Direct Flame Afterburner

DATE 10-15-02

13. ABSORBER

- (a) packed tower
- (b) spray tower
- (c) tray tower
- (d) venturi
- (e) other (specify)
- 14. ADSORBER
 - (a) activated carbon
 - (b) molecular sieve
 - (c) activated alumina
 - (d)silica gel
 - (e) other (specify)
- 15. Condenser (specify)
- 99. Other (specify)

REGISTRATION NUMBER 60997

.

the second second second

BAGHOUSE AIR POLLUTION CONTROL DEVICE SHEET

BAGHOUSE NO. 1 – SURGE SILO NO. 1 (ID BS-1)

Complete a Baghouse Air Pollution Control Device Sheet for each baghouse control device.

- 1. Baghouse Control Device Identification Number: FE-BH
- 2. Manufacturer's name and model identification: Johnson Marsh Skykleen PCSB 10-10 Dust Collector
- 3. Number of compartments in baghouse: <u>1</u>
- 4. Number of compartments online during normal operation and conditions: <u>1</u>
- 5. Gas flow rate into baghouse: <u>8,000</u> ACFM @ <u>Ambient</u> °Fand <u>14.7</u> PSIA
- 6. Total cloth area: **2396** ft²
- 7. Operating air to cloth ratio: <u>7.5 : 1</u> ft/min
- 8. Filter media type: Polyester fabric
- 9. Stabilized static pressure drop across baghouse: <u>2</u> inches H₂O
- 10. Baghouse operation is:

Continuous Automatic Intermittent

11. Method used to clean bags:

□ Shaker

Pulse jet

Reverse jet

12. Emission rate of particulate matter entering and exiting baghouse at maximum design operating conditions:

 Entering baghouse:
 Ib/hr and
 20
 grains/ACF

 Exiting baghouse:
 Ib/hr and
 .015
 grains/ACF

- 13. Guaranteed minimum baghouse collection efficiency: 99 %
- 14. Provide a written description of the capture system (e.g. hooding and ductwork arrangement), size of ductwork and hoods and air volume, capacity and operating horsepower of fan:

Ductwork +20" pipe – Fan 9200 SCFM @ 10" WC & 70'

15. Describe the method of disposal for the collected material: **Baghouse is a bin vent. Material is dropped** directly from the bags back to the silo.

BAGHOUSE AIR POLLUTION CONTROL DEVICE SHEET

BAGHOUSE NO. 2 – SURGE SILO NO. 2 & 3 (ID BS-2 and BS-3)

Complete a Baghouse Air Pollution Control Device Sheet for each baghouse control device.

- 1. Baghouse Control Device Identification Number: <u>FE-BH</u>
- 2. Manufacturer's name and model identification: Johnson Marsh Skykleen PCSB 10-10 Dust Collector
- 3. Number of compartments in baghouse: <u>1</u>
- 4. Number of compartments online during normal operation and conditions: ____1
- 5. Gas flow rate into baghouse: <u>18,000</u> ACFM @ <u>Ambient</u> °Fand <u>14.7</u> PSIA
- 6. Total cloth area: 2396 ft²
- 7. Operating air to cloth ratio: <u>7.5:1</u> ft/min
- 8. Filter media type: Polyester fabric
- 9. Stabilized static pressure drop across baghouse: $\underline{2}$ inches H₂O
- 10. Baghouse operation is:

Continuous Automatic Intermittent

11. Method used to clean bags:

Shaker
<p

12. Emission rate of particulate matter entering and exiting baghouse at maximum design operating conditions:

Entering baghouse:	lb/hr and	20	grains/ACF
Exiting baghouse:	ib/hr and	<u>.015</u>	grains/ACF

- 13. Guaranteed minimum baghouse collection efficiency: 99 %
- 14. Provide a written description of the capture system (e.g. hooding and ductwork arrangement), size of ductwork and hoods and air volume, capacity and operating horsepower of fan:

Ductwork +50' - single fan on discharge of 2 houses; piped in parallel - Fan 20,700 ACFM @ 10" WC

15. Describe the method of disposal for the collected material: **Baghouse is a bin vent. Material is dropped** directly from the bags back to the silo.

COMPANY NAME **Dominion Terminal Associates**

	M					AXIMUM	EMISSION	RATES T		PHERE
	0 D C 0	TC SUSF PARTIC (TS	OTAL PENDED CULATES SP) *	10 SM PARTIC {P	uM OR ALLER ULATES*	SUI DIO (S	LFUR XIDE	NITF OX (N	M	
UNIT REF. NO.	D E	lb/hr	tons/yr	r Ib/hr tons/vr		lb/hr	tons/yr	lb/hr	tons/yr	lb/h
CR-1	4	0.07	0.30	0.035	0.145					
CR-2	4	0.07	0.30	0.035	0.145					
SS-1	4	0.35	1.53	0.17	0.72					
SS-2	4	0.35	1.53	0.17	0.72					
SS-3	4	0.35	1.53	0.17	0.72					
SS-4	4	0.35	1.53	0.17	0.72					
		0.35 1.55 0								

Code M - Emission Estimate Method (provide detailed calculations including assumed control efficiency of control equipment to support reported values.)

1. Stack Test (include a copy of summary)

2. Material Balance (include calculations)

3. Emission Factor (identify source) and include calculations 99. Other (describe)

* TSP, PM10, and VOCs should also be split up by component and reported under TOXIC OR HAZARDOUS POLLUTANTS.

DATE 10-15-02

REGISTRATION NUMBER 60997

OF CRITERIA POLLUTANTS CARBON VOLATILE IONOXIDE ORGANIC LEAD COMPOUNDS * (VOC) (CO) (Pb) lb/hr lb/hr tons/yr tons/yr tons/yr

STATE OPERATING PERMIT EMISSION CAP (Yes/No)	BASIS OF ESTIMATE (USE CODE M)
NO	2

COMPANY NAME Dominion Terminal Associates

	м					MAXIMUM	EMISSION	RATES T		HERE
	0 D C 0	TC SUSP PARTIC (TS	OTAL PENDED CULATES SP) *	10 SM PARTIC (P	μM OR ALLER ULATES* M10)	SUI DIO (S	LFUR XIDE O2)	NITR OX (N	M	
UNIT REF. NO.	D E	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/h
OS -1	0	0.02	0.09	0.01	0.04					
OS-2	0	0.02	0.08	0.01	0.04					
OS-3	0	0.02	0.08	0.01	0.04					
OS-4	0	0.02	0.10	0.01	0.05					
OS-5	4	0.01	0.04	0.00	0.02					
OS-6	4	0.00	0.00	0.00	0.00					
OS-7	4	0.01	0.04	0.00	0.02					

Code M - Emission Estimate Method (provide detailed calculations including assumed control efficiency of control equipment to support reported values.)

1. Stack Test (include a copy of summary)

2. Material Balance (include calculations)

3. Emission Factor (identify source) and include calculations 99. Other (describe)

* TSP, PM10, and VOCs should also be split up by component and reported under TOXIC OR HAZARDOUS POLLUTANTS.

DATE 10-15-02

REGISTRATION NUMBER 60997

OF CRITERIA POLLUTANTS CARBON MONOXIDE VOLATILE ORGANIC COMPOUNDS * (CO) LEAD (CO) (VOC) (Pb) or tons/yr Ib/hr tons/yr or tons/yr Ib/hr tons/yr

STATE OPERATING PERMIT EMISSION CAP (Yes/No)	BASIS OF ESTIMATE (USE CODE M)
NO	2

COMPANY NAME **Dominion Terminal Associates**

		·													·		
	м				/	AXIMUM	EMISSION	RATES T	O ATMOSF	HERE OF	CRITERIA	POLLUTA	NTS				
	O D	TC SUSF	DTAL PENDED	10 SM	µM OR IALLER	SUI DIO	_FUR XIDE	NITF OX	IOGEN	CAF MON	RON OXIDE	VOL ORC	ATILE SANIC	LE	EAD		
	C O	PARTIC	CULATES SP) *	PARTIC (P	CULATES* M10)	(S	O ₂)	(N	10×)	(0	:0)		DUNDS *	(Pb)	STATE OPERATING	
UNIT REF. NO.	D E	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	PERMIT EMISSION CAP (Yes/No)	BASIS OF ESTIMATE (USE CODE M)
BS-1	0	0.00	0.00	0.00	0.00				<u> </u>							NO	99
BS-2	0	0.00	0.00	0.00	0.00											NO	99
BS-3	0	0.00	0.00	0.00	0.00											NO	99
BS-4	4	0.00	0.00	0.00	0.00											NO	99
BS-5	4	0.00	0.00	0.00	0.00											NO	99
BS-6	4	0.00	0.00	0.00	0.00											NO	99
BS-7	4	0.00	0.00	0.00	0.00											NO	99
BS-8	4	0.00	0.00	0.00	0.00											NO	99
BS-9	4	0.00	0.00	0.00	0.00											NO	99

Code M - Emission Estimate Method (provide detailed calculations including assumed control efficiency of control equipment to support reported values.)

1. Stack Test (include a copy of summary)

2. Material Balance (include calculations)

3. Emission Factor (identify source) and include calculations

99. Other (describe)fully-enclosed in building or fully-enclosed w/water and chemical solution * TSP, PM10, and VOCs should also be split up by component and reported under TOXIC OR HAZARDOUS POLLUTANTS.

COMPANY NAME Dominion Terminal Associates

	M O D C O	MAXIMUM EMISSION RATES TO ATMOSPHERE								
		TOTAL SUSPENDED PARTICULATES (TSP) *		10 μM OR SMALLER PARTICULATES* (PM10)		SULFUR DIOXIDE (SO2)		NITROGEN OXIDES (NOx)		M
UNIT REF. NO.	D E	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	_tons/yr	lb/hr	tons/yr	lb/h
BC-1	0	0.04	0.16	0.02	0.08					
BC-2	0	0.04	0.16	0.02	0.08					
BC-3	0	0.01	0.05	0.01	0.03					
BC-4	0	0.01	0.05	0.01	0.03					
BC-5	0	0.01	0.05	0.01	0.03					
BC-6	0	0.01	0.05	0.01	0.03					
BC-7	0	0.01	0.05	0.01	0.03					

Code M - Emission Estimate Method (provide detailed calculations including assumed control efficiency of control equipment to support reported values.)

1. Stack Test (include a copy of summary)

2. Material Balance (include calculations)

3. Emission Factor (identify source) and include calculations 99. Other (describe)

* TSP, PM10, and VOCs should also be split up by component and reported under TOXIC OR HAZARDOUS POLLUTANTS.

DATE10-15-02

REGISTRATION NUMBER 60997

OF CRITERIA POLLUTANTS CARBON VOLATILE ONOXIDE LEAD ORGANIC COMPOUNDS * (CO) (VOC) (Pb)0 lb/hr lb/hr tons/yr tons/yr tons/yr .

STATE PERATING PERMIT EMISSION CAP (Yes/No)	BASIS OF ESTIMATE (USE CODE M)
NO	2
COMPANY NAME Dominion Terminal Associates

	·····					····								<u></u>			
	м				A	AXIMUM	EMISSION	RATES 1	O ATMOS	HERE OF	CRITERIA	POLLUTA	NTS				
		TOTAL SUSPENDED PARTICULATES (TSP) *		10 μM OR SMALLER TES PARTICULATES* (PM10)		SULFUR DIOXIDE (SO2)		NITROGEN OXIDES (NOx)				VOLATILE ORGANIC COMPOUNDS *		LEAD (Pb)		STATE	
UNIT REF. NO.	D E	lb/hr	tons/yr	1b/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr_	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	PERMIT EMISSION CAP (Yes/No)	BASIS OF ESTIMATE (USE CODE M)
BC-8	0	0.03	0.13	0.01	0.06											NO	2
BC-9	0	0.01	0.06	0.01	0.03											NO	2
BC-10	0	0.03	0.13	0.01	0.06											NO	2
BC-11	0	0.01	0.06	0.01	0.03											NO	2
BC-12	0	0.03	0.13	0.01	0.06											NO	2
BC-13	0	0.03	0.13	0.01	0.06											NO	2
BC-14	4	0.02	0.06	0.01	0.04											NO	2

Code M - Emission Estimate Method (provide detailed calculations including assumed control efficiency of control equipment to support reported values.)

1. Stack Test (include a copy of summary)

2. Material Balance (include calculations)

3. Emission Factor (identify source) and include calculations 99. Other (describe)

* TSP, PM10, and VOCs should also be split up by component and reported under TOXIC OR HAZARDOUS POLLUTANTS.

DATE 10-15-02

REGISTRATION NUMBER 60997

COMPANY NAME Dominion Terminal Associates

	м					MAXIMUN	I EMISSION	RATES 1		HERE
	0 D C 0	TC SUSP PARTIC (TS	TOTAL SUSPENDED PARTICULATES (TSP) *		10 μM OR SMALLER PARTICULATES* (PM10)		SULFUR DIOXIDE (SO2)		NITROGEN OXIDES (NOx)	
UNIT REF. NO.	D E	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/h
BC-15	4	0.02	0.08	0.01	0.04					
BC-16	4	0.01	0.04	0.00	0.02					
BC-17	4	0.00	0.00	0.00	0.00					
BC-18	4	0.01	0.04	0.00	0.02					
BC-19	4	0.01	0.04	0.00	0.02					
BC-20	4	0.01	0.04	0.00	0.02					
BC-21	4	0.01	0.03	0.00	0.01					
BC-22	4	0.00	0.01	0.00	0.00					
Code M -	Emia	alon Esti	mate Metho	od (provid	e detailed ca	alculation	including	assumed	control effic	iency

1. Stack Test (include a copy of summary)

2. Material Balance (include calculations)

3. Emission Factor (identify source) and include calculations 99. Other (describe)

* TSP, PM10, and VOCs should also be split up by component and reported under TOXIC OR HAZARDOUS POLLUTANTS.

DATE	10-15-02

REGISTRATION NUMBER 60997

OF CRITERIA POLLUTANTS CARBON VOLATILE IONOXIDE ORGANIC LEAD COMPOUNDS * (CO) (VOC) (Pb) 0 lb/hr tons/yr lb/hr tons/yr tons/yr

of control equipment to support reported values.)

STATE PERATING PERMIT EMISSION CAP (Yes/No)	BASIS OF ESTIMATE (USE CODE M)
NO	2
NO	2
NO	2
	~
NO	2

COMPANY NAME **Dominion Terminal Associates**

			يوسيعه المحمد والمحمول والمحمول والم			· · · · · · · · · · · · · · · · · · ·				
	Μ					AXIMUM	EMISSION	RATES T	O ATMOSE	PHERE
	0 D C 0	TC SUSF PARTIC (TS	TOTAL SUSPENDED PARTICULATES (TSP) *		10 μM OR SMALLER PARTICULATES* (PM10)		SULFUR DIOXIDE (SO2)		NITROGEN OXIDES (NOx)	
UNIT REF. NO.	D E	lb/hr	tons/yr	_ib/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	ib/h
BC-23	4	0.00	0.01	0.00	0.00					
BC-24	4	0.00	0.01	0.00	0.00					
BC-25	4	0.00	0.01	0.00	0.00					
BC-26	4	0.01	0.03	0.00	0.01					
BC-27	4	0.00	0.00	0.00	0.00					
BC-28	4	0.01	0.03	0.00	0.01					
BC-29	4	0.01	0.03	0.00	0.01					
BC-30	4	0.01	0.04	0.00	0.02					
Code M -	Emi	ssion Est	imate Meth	od (provid	le detailed c	alculation	s including	assumed	control effi	ciency

1. Stack Test (include a copy of summary)

2. Material Balance (include calculations)

3. Emission Factor (identify source) and include calculations 99. Other (describe)

* TSP, PM10, and VOCs should also be split up by component and reported under TOXIC OR HAZARDOUS POLLUTANTS.

DATE 10-15-02

REGISTRATION NUMBER 60997

OF CRITERIA POLLUTANTS CARBON VOLATILE IONOXIDE ORGANIC LEAD COMPOUNDS * (CO) (VOC) (Pb) tons/yr lb/hr lb/hr tons/yr tons/yr

of control equipment to support reported values.)

COMPANY NAME Dominion Terminal Associates

	M				/	AXIMUM	EMISSION	RATES T	O ATMOS	PHERE
	0 D C 0	TC SUSP PARTIC (TS	TAL PENDED CULATES SP) *	10 μM OR SMALLER PARTICULATES* (PM10)		SULFUR DIOXIDE (SO2)		NITROGEN OXIDES (NOx)		M
UNIT REF. NO.	D E	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	1b/hr	tons/yr	lb/h
BC-31	4	0.00	0.00	0.00	0.00					
BC-32	4	0.01	0.04	0.00	0.02					
BC-33	4	0.01	0.04	0.00	0.02					
BC-34	4	0.01	0.04	0.00	0.02					
BC-35	4	0.01	0.03	0.00	0.01					
BC-36	4	0.00	0.01	0.00	0.00					
BC-37	4	0.00	0.01	0.00	0.00					

Code M - Emission Estimate Method (provide detailed calculations including assumed control efficiency of control equipment to support reported values.)

1. Stack Test (include a copy of summary)

2. Material Balance (include calculations)

3. Emission Factor (identify source) and include calculations 99. Other (describe)

* TSP, PM10, and VOCs should also be split up by component and reported under TOXIC OR HAZARDOUS POLLUTANTS.

DATE 10-15-02

REGISTRATION NUMBER 60997

OF CRITERIA POLLUTANTS CARBON VOLATILE IONOXIDE ORGANIC LEAD COMPOUNDS * (CO) (VOC) (Pb) lb/hr lb/hr tons/yr tons/yr tons/yr

STATE OPERATING PERMIT EMISSION CAP (Yes/No)	BASIS OF ESTIMATE {USE CODE M}
NO	2

COMPANY NAME Dominion Terminal Associates

	M	MAXIMUM EMISSION RATES TO ATMOSPH										
	0 D C 0	TC SUSP PARTIC (TS	TAL ENDED CULATES	10 μM OR SMALLER PARTICULATES* (PM10)		SULFUR DIOXIDE (SO2)		NITROGEN OXIDES (NOx)		(M		
UNIT REF. NO.	D E	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/h		
BC-38	4	0.00	0.01	0.00	0.00							
BC-39	4	0.00	0.01	0.00	0.00							
BC-40	4	0.01	0.03	0.00	0.01							
BC-41	4	0.00	0.00	0.00	0.00							
BC-42	4	0.01	0.03	0.00	0.01							
BC-43	4	0.03	0.14	0.01	0,06							
BC-44	4	0.01	0.05	0.01	0.03							

Code M - Emission Estimate Method (provide detailed calculations including assumed control efficiency of control equipment to support reported values.)

1. Stack Test (include a copy of summary)

2. Material Balance (include calculations)

3. Emission Factor (identify source) and include calculations 99. Other (describe)

* TSP, PM10, and VOCs should also be split up by component and reported under TOXIC OR HAZARDOUS POLLUTANTS.

DATE 10-15-02

REGISTRATION NUMBER 60997

OF CRITERIA POLLUTANTS CARBON MONOXIDE VOLATILE ORGANIC COMPOUNDS * (CO) LEAD (CO) (VOC) (Pb) C or tons/yr Ib/hr tons/yr Ib/hr tons/yr or tons/yr Ib/hr tons/yr Ib/hr Ib/hr or tons/yr Ib/hr tons/yr Ib/hr Ib/hr or tons/yr Ib/hr tons/yr Ib/hr Ib/hr

STATE OPERATING PERMIT EMISSION CAP	BASIS OF ESTIMATE (USE CODE M)
NO	2

-

COMPANY NAME **Dominion Terminal Associates**

	м			- <u></u>	٨	AXIMUN	EMISSION	RATES T	O ATMOSE	HERE OF	CRITERIA	POLLUTA	NTS			
	0 D 0	TOTAL SUSPENDED PARTICULATES (TSP) *		TOTAL 10 μM OR SUSPENDED SMALLER PARTICULATES PARTICULATE (TSP) * (PM10)		SULFUR DIOXIDE {SO2}		NITROGEN OXIDES (NOx)		CARBON MONOXIDE (CO)		VOLATILE ORGANIC COMPOUNDS * (VOC)		LEAD (Pb)		
UNIT REF. NO.	D E	lb/hr	tons/yr	lb/hr	tons/yr	Ib/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
BC-45	4	0.04	0.16	0.02	0.08											
BC-46	4	0.04	0.16	0.02	0.08											
BC-47	4	0.04	0.16	0.02	0.08											
BC-48	4	0.04	0.16	0.02	0.08											

Code M - Emission Estimate Method (provide detailed calculations including assumed control efficiency of control equipment to support reported values.)

- 1. Stack Test (include a copy of summary)
- 2. Material Balance (include calculations)
- 3. Emission Factor (identify source) and include calculations 99. Other (describe)

* TSP, PM10, and VOCs should also be split up by component and reported under TOXIC OR HAZARDOUS POLLUTANTS.

DATE 10-15-02

REGISTRATION NUMBER 60997

COMPANY NAME Dominion Terminal Associates

	M		MAXIMUM EMISSIO	N RATES TO ATMOSPH	ERE OF POLLUTAN	IT (Specify polluta	ant)*	
	D			CONT	ROLLED	UNCONT		
UNIT REF. NO.	C O D E	VENT/ STACK NO	NAME CAS #	lb/hr	tons/yr	lb/hr	tons/yr	STATE OPEF PERMIT EMISSION (YES/N
CR-1	4	Source	TSP PM10	0.07 0.035	0.30 0.145	7.0 3.29	30.66 14.41	No
CR-2	4	Source	TSP PM10	0.07 0.035	0.30 0.145	7.0 3.29	30.66 14.41	No
SS-1	4	Source	TSP PM10	0.35 0.165	1.5325 0.72	35.0 16.45	153.3 72.05	No
<u>SS-2</u>	4	Source	TSP PM10	0.35 0.165	1.5325 0.72	35.0 16.45	153.3 72.05	No
_ <u>SS-3</u>	4	Source	TSP PM10	0.35 0.165	1.5325 0.72	35.0 16.45	153.3 72.05	No
SS-4	4	Source	TSP PM10	0.35 0.165	1.5325 0.72	35.0 16.45	153.3 72.05	No

1. Stack Test (include a copy)

- 2. Material Balance (include calculations)
- 3. Emission Factor (identify)

99. Other (describe)

+

page.

If you have other regulated pollutants, list as the first CAS number. Toxic Pollutant on the designated list at the front of this application. Particulate matter and volatile organic compounds are not toxic pollutants as generic classes of substances within these classes may be toxic pollutants because their toxic properties or because a TLV (tm) has been established. See the toxic pollutant listing in the front of this application. Specify which pollutants are also reported as components of TSP, PM10, or VOCs on the previous

DATE 10-15-02

REGISTRATION NUMBER 60997

COMPAN	IY NAN	AE Dominion Terr	minal Associates		REGISTRATION NUMBER 6	0997			
	M		MAXIMUM EMISSION	RATES TO ATMOSPH	IERE OF POLLUT	ANT (Specify pollut	ant)*		
				CONT	ROLLED	UNCON	TROLLED		
C O UNIT D REF. E NO.	C O D E	VENT/ STACK NO	NAME CAS #	lb/hr	tons/yr	lb/hr	tons/yr	STATE OPERATING PERMITS EMISSION CAP (YES/NO)	E (U:
BS-4	4	Fugitive	TSP PM10	0.00 0.00	0.00 0.00	0.00	0.00 0.00	No	
BS-5	4	Fugitive	TSP PM10	0.00 0.00	0.00 0.00	0.00	0.00 0.00	No	
BS-6	4	Fugitive	TSP PM10	0.00 0.00	0.00 0.00	0.00	0.00 0.00	No	
BS-7	4	Fugitive	TSP PM10	0.00 0.00	0.00 0.00	0.00	0.00 0.00	No	
BS-8	4	Fugitive	TSP PM10	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	No	
BS-9	4	Fugitive	TSP PM10	0.00 0.00	0.00	0.00 0.00	0.00 0.00	No	

Code M - Emission Estimate Method (provide detailed calculations including assumed control efficiency of control equipment, if applicable)

- 1. Stack Test (include a copy)
- 2. Material Balance (include calculations)
- 3. Emission Factor (identify)

+

If you have other regulated pollutants, list as the first CAS number. Toxic Pollutant on the designated list at the front of this application. Particulate matter and volatile organic compounds are not toxic pollutants as generic classes of substances, but individual substances within these classes may be toxic pollutants because their toxic properties or because a TLV (tm) has been established. See the toxic pollutant listing in the front of this application. Specify which pollutants are also reported as components of TSP, PM10, or VOCs on the previous page.

Page Revised April 15, 2002

99. Other (describe) - FULLY-ENCLOSED IN BUILDING OR FULLY-ENCLOSED W/WATER & CHEMICAL SOLUTION

COMPANY NAME Dominion Terminal Associates					DATE 10-15-	02	REGISTRATION NU	
	M		MAXIMUM EMISSION	N RATES TO ATMOSPH	ERE OF POLLUTA	ANT (Specify pollut		
	D			CONT	ROLLED	UNCON	TROLLED	
UNIT REF. NO.	C O UNIT REF. D REF. E NO. ST/	VENT/ STACK NO	NAME CAS #	lb/hr	tons/yr	lb/hr	tons/y	STATE OPE PERMI EMISSION (YES/N
OS-5	4	Fugitive	TSP PM10	0.01 0.00	0.04 0.02	0.90 0.42	3.92 1.84	No
05-6	4	Fugitive	TSP PM10	0.00 0.00	0.00 0.00	0.00 0.00	0.02 0.01	No
<u>0S-7</u>	4	Fugitive	TSP PM10	0.01 0.00	0.04 0.02	0.90 0.42	3.92 1.84	No

Code M - Emission Estimate Method (provide detailed calculations including assumed control efficiency of control equipment, if applicable)

- 1. Stack Test (include a copy)
- 2. Material Balance (include calculations)
- 3. Emission Factor (identify)
- 99. Other (describe)
- + page.

If you have other regulated pollutants, list as the first CAS number. Toxic Pollutant on the designated list at the front of this application. Particulate matter and volatile organic compounds are not toxic pollutants as generic classes of substances, but individual substances within these classes may be toxic pollutants because their toxic properties or because a TLV (tm) has been established. See the toxic pollutant listing in the front of this application. Specify which pollutants are also reported as components of TSP, PM10, or VOCs on the previous

JMBER 60997

COMPANY NAME Dominion Terminal Associates				DATE 10-15-02		REGISTRATION NUM		
	м		MAXIMUM EMISSION	RATES TO ATMOSPH	IERE OF POLLUT	ANT (Specify pollut	<u>ant)*</u>	
	O D			CONT	ROLLED	UNCON	TROLLED	
C O UNIT D REF. E VENT/ NO. STACK I	VENT/ STACK NO	NAME CAS #	lb/hr	tons/yr	lb/hr	tons/yr	STATE OPER PERMIT EMISSION (YES/NO	
BC-14	4	TP-16	TSP PM10	0.02 0.01	0.08 0.04	1.87 0.88	8.18 3.87	No
BC-15	4	TP-18	TSP PM10	0.02 0.01	0.08 0.04	1.87 0.88	8.18 3.87	No
BC-16	4	TP-21	TSP PM10	0.01 0.00	0.04 0.02	0.93 0.44	4.09 1.94	No
BC-17	4	TP-24	TSP PM10	0.00	0.00 0.00	0.00	0.00 0.00	No
BC-18	4	TP-27	TSP PM10	0.01 0.00	0.04 0.02	0.93 0.44	4.09 1.94	No
BC-19	4	TP-28	TSP PM10	0.01	0.04 0.02	0.93 0.44	4.09 1.94	No

. Stack Test (include a copy)

- 2. Material Balance (include calculations)
- 3. Emission Factor (identify)

99. Other (describe)

*

If you have other regulated pollutants, list as the first CAS number. Toxic Pollutant on the designated list at the front of this application. Particulate matter and volatile organic compounds are not toxic pollutants as generic classes of substances, but individual substances within these classes may be toxic pollutants because their toxic properties or because a TLV (tm) has been established. See the toxic pollutant listing in the front of this application. Specify which pollutants are also reported as components of TSP, PM10, or VOCs on the previous page.

MBER 60997

COMPANY NAME Dominion Terminal Associates					DATE 10-15-02		REGISTRATION NU	
	M		MAXIMUM EMISSION	RATES TO ATMOSPH	ERE OF POLLUT	ANT (Specify pollut	ant)*	
	D			CONT	ROLLED	UNCON	TROLLED	
C O UNIT REF. D REF. E NO.	VENT/ STACK NO	NAME CAS #	lb/hr	tons/yr	lb/hr	tons/yr	STATE OPE PERMI EMISSION (YES/N	
BC-20	4	TP-30	TSP PM10	0.01 0.00	0.04 0.02	0.93 0.44	4.09 1.94	No
BC-21	4	TP-32	TSP PM10	0.01 0.00	0.03 0.01	0.62 0.30	2.73 1.29	No
BC-22	4	TP-33-36-39	TSP PM10	0.00 0.00	0.01 0.00	0.21 0.10	0.91 0.43	No
BC-23	4	TP-35	TSP PM10	0.00	0.01 0.00	0.21 0.10	0.91 0.43	<u>No</u>
BC-24	4	TP-38	TSP PM10	0.00 0.00	0.01 0.00	0.21 0.10	0.91 0.43	No

- 1. Stack Test (include a copy)
- 2. Material Balance (include calculations)
- 3. Emission Factor (identify)
- 99. Other (describe)
- + page.

Code M - Emission Estimate Method (provide detailed calculations including assumed control efficiency of control equipment, if applicable)

If you have other regulated pollutants, list as the first CAS number. Toxic Pollutant on the designated list at the front of this application. Particulate matter and volatile organic compounds are not toxic pollutants as generic classes of substances, but individual substances within these classes may be toxic pollutants because their toxic properties or because a TLV (tm) has been established. See the toxic pollutant listing in the front of this application. Specify which pollutants are also reported as components of TSP, PM10, or VOCs on the previous

JMBER 60997

COMPANY NAME Dominion Terminal Associates

	м		MAXIMUM EMISSION RATES TO ATMOSPHERE OF POLLUTANT (Specify pollutant)*					
	O D			CONTI	ROLLED	UNCONTROLLED		
C O UNIT D REF. E NO.	VENT/ STACK NO	NAME CAS #	lb/hr	tons/yr	lb/hr	tons/yr	STATE OPER PERMIT EMISSION (YES/N)	
BC-25	4	TP-41	TSP PM10	0.00 0.00	0.01 0.00	0.21 0.10	0.91 0.43	No
BC-26	4	TP-42	TSP PM10	0.01 0.00	0.03 0.01	0.62 0.30	2.73 1.29	No
BC-27	4	TP-43	TSP PM10	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	No
BC-28	4	TP-45	TSP PM10	0.01 0.00	0.03 0.01	0.62 0.30	2.73 1.29	No
BC-29	4	TP-46	TSP PM10	0.01 0.00	0.03 0.01	0.62 0.30	2.73 1.29	No
BC-30	4	TP-49	TSP PM10	0.01 0.00	0.04 0.02	0.93 0.44	4.09 1.94	No

1. Stack Test (include a copy)

- 2. Material Balance (include calculations)
- 3. Emission Factor (identify)

99. Other (describe)

*

If you have other regulated pollutants, list as the first CAS number. Toxic Pollutant on the designated list at the front of this application. Particulate matter and volatile organic compounds are not toxic pollutants as generic classes of substances, but individual substances within these classes may be toxic pollutants because their toxic properties or because a TLV (tm) has been established. See the toxic pollutant listing in the front of this application. Specify which pollutants are also reported as components of TSP, PM10, or VOCs on the previous page.

Page Revised April 15, 2002

Code M - Emission Estimate Method (provide detailed calculations including assumed control efficiency of control equipment, if applicable)

REGISTRATION NUMBER 60997

COMPANY NAME Dominion Terminal Associates				DATE 10-15-	02	REGISTRATION NUI		
 	м		MAXIMUM EMISSION	RATES TO ATMOSPH	ERE OF POLLUT	ANT (Specify pollut	ant)*	
	O D			CONTI	ROLLED	UNCON	TROLLED	
UNIT REF. NO.	C O UNIT D REF. E NO.	VENT/ STACK NO	NAME CAS #	lb/hr	tons/yr	lb/hr	tons/y	STATE OPER PERMIT EMISSION (YES/N
BC-31	4	TP-52	TSP PM10	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	No
BC-32	4	TP-55	TSP PM10	0.01 0.00	0.04 0.02	0.93 0.44	4.09 1.94	No
BC-33	4	TP-56	TSP PM10	0.01 0.00	0.04 0.02	0.93 0.44	4.09 1.94	No
BC-34	4	TP-58	TSP PM10	0.01 0.00	0.04 0.02	0.93 0.44	4.09 1.94	No
BC-35	4	TP-60	TSP PM10	0.01 0.00	0.03 0.01	0.62 0.30	2.73 1.29	No

- 1. Stack Test (include a copy)
- 2. Material Balance (include calculations)
- 3. Emission Factor (identify)
- 99. Other (describe)
- . page.

Code M - Emission Estimate Method (provide detailed calculations including assumed control efficiency of control equipment, if applicable)

If you have other regulated pollutants, list as the first CAS number. Toxic Pollutant on the designated list at the front of this application. Particulate matter and volatile organic compounds are not toxic pollutants as generic classes of substances, but individual substances within these classes may be toxic pollutants because their toxic properties or because a TLV (tm) has been established. See the toxic pollutant listing in the front of this application. Specify which pollutants are also reported as components of TSP, PM10, or VOCs on the previous

MBER 60997

COMPANY NAME Dominion Terminal Associates				DATE 10-15-	02	REGISTRATION NUI		
	м		MAXIMUM EMISSION	I RATES TO ATMOSPH	ERE OF POLLUT	ANT (Specify pollut	ant)*	
	O D			CONTI	ROLLED	UNCON	TROLLED	
C O UNIT D REF. E NO.	VENT/ STACK NO	NAME CAS #	lb/hr	tons/yr	lb/hr	tons/y	STATE OPEF PERMIT EMISSION (YES/N	
BC-36	4	TP-61	TSP PM10	0.00	0.01 0.00	0.21 0.10	0.91 0.43	Νο
BC-37	4	TP-63	TSP PM10	0.00 0.00	0.01 0.00	0.21 0.10	0.91 0.43	Νο
BC-38	4	TP-66	TSP PM10	0.00 0.00	0.01 0.00	0.21 0.10	0.91 0.43	No
BC-39	4	TP-69	TSP PM10	0.00 0.00	0.01 0.00	0.21 0.10	0.91 0.43	No
BC-40	4	TP-70	TSP PM10	0.01 0.00	0.03 0.01	0.62 0.30	2.73 1.29	Νο

Code M - Emission Estimate Method (provide detailed calculations including assumed control efficiency of control equipment, if applicable)

- 1. Stack Test (include a copy)
- 2. Material Balance (include calculations)
- 3. Emission Factor (identify)
- 99. Other (describe)
- *

If you have other regulated pollutants, list as the first CAS number. Toxic Pollutant on the designated list at the front of this application. Particulate matter and volatile organic compounds are not toxic pollutants as generic classes of substances, but individual substances within these classes may be toxic pollutants because their toxic properties or because a TLV (tm) has been established. See the toxic pollutant listing in the front of this application. Specify which pollutants are also reported as components of TSP, PM10, or VOCs on the previous page.

MBER 60997

COMPANY NAME Dominion Terminal Associates

	м		MAXIMUM EMISSION RATES TO ATMOSPHERE OF POLLUTANT (Specify pollutant)*					
	O D			CONT	ROLLED	UNCONTROLLED		STATE OPER PERMITE EMISSION
UNIT REF. NO.	C O UNIT D REF. E VENT/ NO. STACK NO	NAME CAS #	lb/hr	tons/yr	lb/hr	tons/yr		
BC-41	4	TP-71	TSP PM10	0.00 0.00	0.00	0.00 0.00	0.00	No
BC-42	4	TP-73	TSP PM10	0.01 0.00	0.03 0.01	0.62 0.30	2.73 1.29	No
BC-43	4	TP-74	TSP PM10	0.01 0.00	0.03 0.01	0.62 0.30	2.73 1.29	No
BC-44	4	TP-76	TSP PM10	0.01 0.01	0.05 0.03	1.25 0.59	5.47 2.59	Νο

Code M - Emission Estimate Method (provide detailed calculations including assumed control efficiency of control equipment, if applicable)

- 1. Stack Test (include a copy)
- 2. Material Balance (include calculations)
- 3. Emission Factor (identify)
- 99. Other (describe)
- + page.

Page Revised April 15, 2002

If you have other regulated pollutants, list as the first CAS number. Toxic Pollutant on the designated list at the front of this application. Particulate matter and volatile organic compounds are not toxic pollutants as generic classes of substances, but individual substances within these classes may be toxic pollutants because their toxic properties or because a TLV (tm) has been established. See the toxic pollutant listing in the front of this application. Specify which pollutants are also reported as components of TSP, PM10, or VOCs on the previous

DATE	10-15-02

REGISTRATION NUMBER 60997

COMPANY NAME Dominion Terminal Associates					DATE 10-15-	02	REGISTRATION NU
M		MAXIMUM EMISSION	RATES TO ATMOSPH	ERE OF POLLUT	ANT (Specify pollut	ant)*	
			CONT	OLLED	UNCON	UNCONTROLLED	
C O UNIT D REF. E NO.	VENT/ STACK NO	NAME CAS #	lb/hr	tons/yr	lb/hr	tons/yr	STATE OPER PERMIT EMISSION (YES/N
3C45 4	TP-89	TSP PM10	0.01 0.01	0.05 0.03	1.22 0.58	5.34 2.52	No
4 3C-46	TP-91	TSP PM10	0.01 0.01	0.05 0.03	1.22 0.58	5.34 2.52	No
3C-47	TP-92	TSP PM10	0.01 0.01	0.05 0.03	1.22 0.58	5.34 2.52	No
4 3C-48	TP-93	TSP PM10	0.01 0.01	0.05 0.03	1.22 0.58	5.34 2.52	No
REF. E NO. 4 3C45 4 3C-46 4 3C-47 4 3C-48 4	VENT/ STACK NO TP-89 TP-91 TP-92 TP-93	NAME CAS # TSP PM10 TSP PM10 TSP PM10 TSP PM10	lb/hr 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	tons/γr 0.05 0.03 0.05 0.03 0.05 0.03 0.05 0.03	Ib/hr 1.22 0.58 1.22 0.58 1.22 0.58 1.22 0.58 1.22 0.58	tons/yr 5.34 2.52 5.34 2.52 5.34 2.52 5.34 2.52	

Code M - Emission Estimate Method (provide detailed calculations including assumed control efficiency of control equipment, if applicable)

- 1. Stack Test (include a copy)
- 2. Material Balance (include calculations)
- 3. Emission Factor (identify)

99. Other (describe)

+

If you have other regulated pollutants, list as the first CAS number. Toxic Pollutant on the designated list at the front of this application. Particulate matter and volatile organic compounds are not toxic pollutants as generic classes of substances, but individual substances within these classes may be toxic pollutants because their toxic properties or because a TLV (tm) has been established. See the toxic pollutant listing in the front of this application. Specify which pollutants are also reported as components of TSP, PM10, or VOCs on the previous page.

JMBER 60997

EPA ACCEPTED - CONTROL DEVICE LISTING

Fugitive Dust Sources	Control Device* Control Device Pre		Control Efficiency (%)	
	UNLOADING			
From Railcar or Truck	Full Enclosure Vented to Baghouse	UL-BH	99	
From Railcar or Truck	Full Enclosure	UL-FE	70	
From Railcar or Truck	Wet Suppression with Chemical Solution	UL-CS	80	
From Railcar or Truck	Water Spray	UL-WS	50	
Dump Bins	FE and Water Sprays with Chemical Solution	บD-FC	99	
Dump Bins	Full Enclosure with water sprays	UD-FW	90	

CRUSHING AND SCREENING

Crushing or Screening	Full Enclosure Vented to Baghouse	CS-BH	99			
Crushing or Screening	Wet Suppression with Chemicals	CS-CS	90			
Crushing or Screening	Full Enclosure with Water Spray	CS-FW	90			
Crushing or Screening	Full Enclosure/Wet Suppression/Chemicals	CS-FC	99			
Crushing or Screening	Full enclosure	CS-FE	80			
	TRANSFER AND CONVE	YING	-			
Conveyor Transfer Point	Full Enclosure Vented to Baghouse	TC-BH	99			
Conveyor Transfer Point	Full Enclosure with Water Spray	TC-FW	90			
Conveyor Transfer Point	FE and Water Spray with Chemical Solution	TC-FC	99			
Conveyor Transfer Point	PE and Water Spray with Chemical Solution	TC-PC	95			
Conveyor Transfer Point	Full enclosure	TC-FE	80			
Conveyor Transfer Point	Water spray	TC-WS	70			
Conveyor Transfer Point	Partial Enclosure	TC-PE	50			
CLEANING						
Wet Wash Operations	Full Enclosure	WW-FE	100			
	STORAGE					
Loading onto Piles	Full Enclosure	SL-FE	80			
Loading onto Piles	Telescopic Chute	SL-TC	75			
Loading onto Piles	Wet Suppression with Chemical Solution	SL-CS	75			
Loading onto Piles	Wind Guard	SL-WG	50			
Wind Erosion	Full Enclosure	SW-FE	100			
Wind Erosion	Wet Suppression with Chemical Solution	SW-CS	99			
Wind Erosion	Water Spray	SW-WS	75			
	LOADING OUT					
From Stockpiles	Wet Suppression with Chemical Solution	LO-CS	95			
From Stockpiles	Under-pile Conveyor with Water Sprays	LO-UC	85			
From Stockpiles	Bucket Wheel Reclaimer	LO-RC	80			

	LOADING		
To Railcar, Barge or Truck	Wet Suppression with Chemical Solution	LR-CS	80
To Railcar, Barge or Truck	Telescopic Chute with Water Sprays	LR-TW	90
	HAULROADS		
Unpaved	Water Truck with Chemical Solution	HR-CS	85
Unpaved	Water Truck with Water Spray	HR-WS	70

For purposes of a General Permit for coal handling and preparation facilities, the following emission calculation methods will provide an adequate estimate of facility emissions from point sources and fugitive emission sources. However, where source (facility) specific tests are available, such information is preferable. Other emission factors may be acceptable provided documentation as to accuracy and appropriateness are provided by the applicant.

Completely fill out the following INPUTS pages with all requested facility specific information.

INPUTS		Pag
Include all information for each emission source and	Name of applicant:	Dominion Terminal Associates
transfer point as listed in the permit application.	Name of plant:	Pier 11 Facility
		Modification October, 2002

	Number of	Max, raw coal	Max. raw coal	Control	Control
	Crushers	input per	input per	Device	Efficiency
	and Screens	hour (Tons)	year (Tons)	ID Number	%
Primary Crushing	2	700	6,132,000	CS-FC	99
Secondary Crushing					
Screening	4	700	6,132,000	CS-FC	99

2. TRANSFER POINTS (including all conveyor transfer points, equipment transfer points etc.)

	<u> </u>	<u>PM-10</u>	
k = Particle Size Multiplier (dimensionless)	0.74	0.35	
U = Mean Wind Speed (mph)	10.5	Obtained	from NWS

Point ID No. Include ID Numbers of all conveyors, crusters, screens, stockpiles, etc. involved Moisture Cantent % Transfer Rate TP+ Device ID Number Eff TP-01 Railcar Dump #1 to Belt BC-01 6 1,370 12,000,000 UD-FC TP-02 Railcar Dump #2 to Belt BC-01 6 1,370 12,000,000 UD-FC TP-03 Belt BC-01 to Belt BC-02 6 2,740 24,000,000 TC-FC TP-04 Belt BC-02 to Surge Silo #1 (BS-01) 6 2,740 24,000,000 TC-FC TP-05 Silo #1 to Belt BC-03 6 2,740 24,000,000 TC-FC TP-06 Belt BC-03 to Belt BC-05 6 1,826 16,000,000 TC-FC TP-09 Belt BC-05 to Belt BC-05 6 1,826 16,000,000 TC-FC TP-09 Belt BC-05 to Belt BC-05 6 1,826 16,000,000 TC-FC TP-10 Belt BC-07 to Stockpile 6 913 8,000,000 LO-RC TP-11 Belt BC-13 to Stockpile 6 1,400 12,264,000 TC-FC <th>Transfer</th> <th>Transfer Point Description</th> <th>Material</th> <th></th> <th>Maximum</th> <th>Control</th> <th>Control</th>	Transfer	Transfer Point Description	Material		Maximum	Control	Control
ID No. crushers, screens, stockpiles, etc. involved Content % TPH TPY ID Number TP-01 Railcar Dump #1 to Belt BC-01 6 1,370 12,000,000 UD-FC TP-02 Railcar Dump #2 to Belt BC-01 6 1,370 12,000,000 UD-FC TP-03 Belt BC-01 to Belt BC-02 6 2,740 24,000,000 TC-BH TP-04 Belt BC-03 to Belt BC-03 6 2,740 24,000,000 TC-BH TP-05 Sil #1 to Belt BC-03 6 2,740 24,000,000 LO-BH TP-06 Belt BC-03 to Belt BC-04 6 913 8,000,000 TC-FC TP-07 Belt BC-03 to Belt BC-05 6 1,826 16,000,000 TC-FC TP-09 Belt BC-05 to Belt BC-13 6 913 8,000,000 TC-FC TP-10 Belt BC-06 to Belt BC-13 6 913 8,000,000 TC-FC TP-11 Belt BC-13 to Stockpile 6 913 8,000,000 LO-RC TP-13 Belt BC-14 to Synful Feed Stockpile<	Point	Include ID Numbers of all conveyors,	Moisture	Tr	Transfer Rate		Efficiency
TP-01 Railcar Dump #1 to Belt BC-01 6 1,370 12,000,000 UD-FC TP-02 Railcar Dump #2 to Belt BC-01 6 1,370 12,000,000 UD-FC TP-03 Belt BC-01 to Belt BC-02 6 2,740 24,000,000 TC-FC TP-04 Belt BC-03 to Selt BC-03 6 2,740 24,000,000 TC-FC TP-05 Sile #1 to Belt BC-03 6 2,740 24,000,000 TC-FC TP-06 Belt BC-04 to Stockpile 6 913 8,000,000 TC-FC TP-07 Bet BC-03 to Belt BC-05 6 1,826 16,000,000 TC-FC TP-08 Belt BC-03 to Belt BC-05 6 913 8,000,000 TC-FC TP-09 Belt BC-05 to Belt BC-06 6 913 8,000,000 TC-FC TP-10 Belt BC-05 to Belt BC-06 6 913 8,000,000 TC-FC TP-11 Belt BC-07 to Stockpile 6 913 8,000,000 TC-FC TP-13 Belt BC-14 to Symfuel Feed Stockpile 6	ID No.	crushers, screens, stockpiles, etc. involved	Content %	TPH	TPY	ID Number	%
TP-01 Railcar Dump #1 to Belt BC-01 6 1,370 12,000,000 UD-FC TP-02 Railcar Dump #2 to Belt BC-01 6 1,370 12,000,000 UD-FC TP-03 Belt BC-01 to Belt BC-02 6 2,740 24,000,000 TC-FC TP-04 Belt BC-02 to Surge Silo #1 (BS-01) 6 2,740 24,000,000 TC-FC TP-05 Silo #1 to Belt BC-03 6 2,740 24,000,000 TC-FC TP-06 Belt BC-03 to Belt BC-04 6 913 8,000,000 TC-FC TP-07 Belt BC-05 to Belt BC-05 6 1,826 16,000,000 TC-FC TP-08 Belt BC-05 to Belt BC-05 6 913 8,000,000 TC-FC TP-10 Belt BC-05 to Belt BC-05 6 913 8,000,000 TC-FC TP-10 Belt BC-07 to Stockpile 6 913 8,000,000 TC-FC TP-11 Belt BC-07 to Stockpile 6 913 8,000,000 TC-FC TP-13 Belt BC-13 6 1,400 12,284,000 LO-RC TP-14 Stockpile to Belt BC-13 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
TP-02 Railcar Dump #2 to Belt BC-01 6 1,370 12,000,000 UD-FC TP-03 Belt BC-01 to Belt BC-02 6 2,740 24,000,000 TC-FC TP-04 Belt BC-03 to Surge Site #1 (BS-01) 6 2,740 24,000,000 TC-FC TP-05 Sile #1 to Belt BC-03 8 2,740 24,000,000 TC-FC TP-06 Belt BC-03 to Belt BC-04 6 913 8,000,000 TC-FC TP-07 Belt BC-04 to Stockpile 6 913 8,000,000 TC-FC TP-08 Belt BC-05 to Belt BC-05 6 1,826 16,000,000 TC-FC TP-09 Belt BC-05 to Belt BC-13 6 913 8,000,000 TC-FC TP-10 Belt BC-13 to Stockpile 6 913 8,000,000 TC-FC TP-11 Belt BC-05 to Belt BC-07 6 913 8,000,000 TC-FC TP-14 Belt BC-07 to Stockpile 6 1,400 12,264,000 LO-RC TP-14 Belt BC-13 6 1,400 12,264,000 TC-FC TP-14 Belt BC-14 6	TP-01	Railcar Dump #1 to Belt BC-01	6	1,370	12,000,000	UD-FC	99
TP-03 Bett BC-01 to Bett BC-02 6 2,740 24,000,000 TC-FC TP-04 Bett BC-02 to Surge Silo #1 (BS-01) 6 2,740 24,000,000 TC-FC TP-05 Silo #1 to Bett BC-03 6 2,740 24,000,000 IC-FC TP-06 Bett BC-03 to Bett BC-04 6 913 8,000,000 IC-FC TP-07 Bett BC-03 to Bett BC-05 6 1,826 16,000,000 TC-FC TP-08 Bett BC-05 to Bett BC-05 6 1,826 16,000,000 TC-FC TP-09 Bett BC-05 to Bett BC-05 6 1,826 16,000,000 TC-FC TP-10 Bett BC-05 to Bett BC-06 6 913 8,000,000 TC-FC TP-11 Bett BC-05 to Bett BC-06 6 913 8,000,000 TC-FC TP-13 Bett BC-07 to Stockpile 6 913 8,000,000 LO-RC TP-14 Stockpile to Bett BC-13 6 1,400 12,264,000 TC-FC TP-14 Stockpile to Bett BC-15 6 1,400 12,264,000 TC-FC TP-15 Bett BC-16 to Crusher	TP-02	Railcar Dump #2 to Belt BC-01	6	1,370	12,000,000	UD-FC	99
ITP-04 Beit BC-02 to Surge Silo #1 (BS-01) 6 2,740 24,000,000 TC-BH TP-05 Silo #1 to Beit BC-03 6 2,740 24,000,000 LO-BH TP-06 Beit BC-03 to Beit BC-04 6 913 8,000,000 TC-FC TP-07 Beit BC-03 to Beit BC-05 6 1,826 16,000,000 TC-FC TP-09 Beit BC-05 to Beit BC-13 6 913 8,000,000 TC-FC TP-10 Beit BC-05 to Beit BC-05 6 1,826 16,000,000 TC-FC TP-10 Beit BC-05 to Beit BC-05 6 913 8,000,000 TC-FC TP-11 Beit BC-05 to Beit BC-06 6 913 8,000,000 TC-FC TP-12 Beit BC-07 to Stockpile 6 913 8,000,000 TC-FC TP-13 Beit BC-13 to Beit BC-13 6 1,400 12,264,000 TC-FC TP-14 Stockpile to Beit BC-15 6 1,400 12,264,000 TC-FC TP-15 Beit BC-15 to Crushers CR-1/CR-2 6 1,400 12,264,000 TC-FC TP-16 Beit BC-16 to	TP-03	Belt BC-01 to Belt BC-02	6	2,740	24,000,000	TC-FC	99
ITP-05 Silo #1 to Belt BC-03 6 2,740 24,000,000 LC-BH TP-06 Belt BC-03 to Belt BC-04 6 913 8,000,000 TC-FC TP-07 Belt BC-03 to Belt BC-05 6 1,826 16,000,000 TC-FC TP-08 Belt BC-05 to Belt BC-13 6 913 8,000,000 TC-FC TP-09 Belt BC-05 to Belt BC-13 6 913 8,000,000 TC-FC TP-10 Belt BC-05 to Belt BC-06 6 913 8,000,000 TC-FC TP-11 Belt BC-05 to Belt BC-07 6 913 8,000,000 TC-FC TP-12 Belt BC-07 to Stockpile 6 913 8,000,000 TC-FC TP-13 Belt BC-13 to Belt BC-13 6 1,400 12,264,000 TC-FC TP-16 Belt BC-14 to Synfuel Feed Stockpile 6 1,400 12,264,000 TC-FC TP-18 Belt BC-16 to Crusher 6 700 6,132,000 TC-FC TP-18 Belt BC-16 6 700 6,132,000 TC-FC TP-19 Stockpile to Bin #4 6	TP-04	Belt BC-02 to Surge Silo #1 (BS-01)	6	2,740	24,000,000	TC-BH	99
TP-06 Beit BC-03 to Beit BC-04 6 913 8,000,000 TC-FC TP-07 Beit BC-03 to Beit BC-05 6 913 8,000,000 LC-RC TP-08 Beit BC-03 to Beit BC-05 6 18,26 16,000,000 TC-FC TP-09 Beit BC-05 to Beit BC-13 6 913 8,000,000 TC-FC TP-10 Beit BC-05 to Beit BC-06 6 913 8,000,000 TC-FC TP-11 Beit BC-05 to Beit BC-06 6 913 8,000,000 TC-FC TP-12 Beit BC-06 to Beit BC-07 6 913 8,000,000 TC-FC TP-13 Beit BC-07 to Stockpile 6 913 8,000,000 LO-RC TP-14 Stockpile to Beit BC-13 6 1,400 12,264,000 TC-FC TP-15 Beit BC-14 to Synfuel Feed Stockpile 6 1,400 12,264,000 TC-FC TP-16 Beit BC-15 to Crushers CR-1/CR-2 6 1,400 12,264,000 TC-FC TP-18 Beit BC-16 to Sonshers CR-1/CR-2 6 1,400 12,264,000 TC-FC TP-17 Stockpile	TP-05	Silo #1 to Belt BC-03	6	2,740	24,000,000	LO-BH	99
IP-07 Beit BC-04 to Stockpile 6 913 8,000,000 LO-RC TP-08 Beit BC-03 to Beit BC-05 6 1,826 16,000,000 TC-FC TP-09 Beit BC-05 to Beit BC-13 6 913 8,000,000 TC-FC TP-10 Beit BC-05 to Beit BC-06 6 913 8,000,000 TC-FC TP-11 Beit BC-06 to Beit BC-07 6 913 8,000,000 TC-FC TP-12 Beit BC-06 to Beit BC-07 6 913 8,000,000 TC-FC TP-13 Beit BC-07 to Stockpile 6 913 8,000,000 TC-FC TP-14 Stockpile to Beit BC-13 6 1,400 12,264,000 LO-RC TP-15 Beit BC-14 to Synfuel Feed Stockpile 6 1,400 12,264,000 TC-FC TP-17 Stockpile to Bin #4 6 700 6,132,000 LO-FC TC-FC TP-18 Beit BC-16 to Crusher 6 700 6,132,000 TC-FC TC-FC TP-17 Stockpile to Bin #4 6 700 6,132,000 LO-FC TC-FC TP2	TP-06	Belt BC-03 to Belt BC-04	6	913	8,000,000	TC-FC	99
TP-08 Bett BC-03 to Bett BC-05 6 1,826 16,000,000 TC-FC TP-09 Bett BC-05 to Bett BC-13 6 913 8,000,000 TC-FC TP-10 Bett BC-13 to Stockpile 6 913 8,000,000 LO-RC TP-11 Bett BC-05 to Bett BC-06 6 913 8,000,000 TC-FC TP-12 Bett BC-06 to Bett BC-07 6 913 8,000,000 TC-FC TP-13 Bett BC-07 to Stockpile 6 913 8,000,000 LO-RC TP-13 Bett BC-13 to Stockpile 6 913 8,000,000 LO-RC TP-15 Bett BC-13 to Bett BC-13 6 1,400 12,264,000 TC-FC TP-16 Bett BC-14 to Synfuel Feed Stockpile 6 1,400 12,264,000 TC-FC TP-17 Stockpile to Bitt BC-15 6 1,400 12,264,000 TC-FC TP-18 Bett BC-15 to Crushers CR-1/CR-2 6 1,400 12,264,000 TC-FC TP20 Bin #4 to Bett BC-16 6 700 6,132,000 LO-FC TP21 Bett BC-16 to Crusher <td>TP-07</td> <td>Belt BC-04 to Stockpile</td> <td>6</td> <td>913</td> <td>8,000,000</td> <td>LO-RC</td> <td>99</td>	TP-07	Belt BC-04 to Stockpile	6	913	8,000,000	LO-RC	99
TP-09 Belt BC-05 to Belt BC-13 6 913 8,000,000 TC-FC TP-10 Belt BC-13 to Stockpile 6 913 8,000,000 LO-RC TP-11 Belt BC-05 to Belt BC-06 6 913 8,000,000 TC-FC TP-12 Belt BC-06 to Belt BC-07 6 913 8,000,000 TC-FC TP-13 Belt BC-07 to Stockpile 6 913 8,000,000 LO-RC TP-14 Stockpile to Belt BC-13 6 1,400 12,264,000 LO-RC TP-15 Belt BC-14 to Synfuel Feed Stockpile 6 1,400 12,264,000 TC-FC TP-17 Stockpile to Belt BC-15 6 1,400 12,264,000 TC-FC TP-18 Belt BC-14 to Synfuel Feed Stockpile 6 1,400 12,264,000 TC-FC TP-18 Belt BC-15 to Crushers CR-1/CR-2 6 1,400 12,264,000 TC-FC TP-18 Belt BC-16 to Crusher 6 700 6,132,000 LO-FC TP20 Bin #4 to Belt BC-16 6 700 6,132,000 LO-FC TP21 Belt BC-16 to Cr	TP-08	Belt BC-03 to Belt BC-05	6	1,826	16,000,000	TC-FC	99
TP-10 Beit BC-13 to Stockpile 6 913 8,000,000 LO-RC TP-11 Beit BC-05 to Beit BC-06 6 913 8,000,000 TC-FC TP-12 Beit BC-06 to Beit BC-07 6 913 8,000,000 TC-FC TP-13 Beit BC-07 to Stockpile 6 913 8,000,000 LO-RC TP-14 Stockpile to Beit BC-13 6 1,400 12,264,000 LO-RC TP-15 Beit BC-14 to Synfuel Feed Stockpile 6 1,400 12,264,000 TC-FC TP-16 Beit BC-15 6 1,400 12,264,000 TC-FC TP-17 Stockpile to Beit BC-15 6 1,400 12,264,000 TC-FC TP-18 Beit BC-15 to Crushers CR-1/CR-2 6 1,400 12,264,000 TC-FC TP19 Stockpile to Bin #4 6 700 6,132,000 LO-FC TP20 Bin #4 to Beit BC-16 6 700 6,132,000 LO-FC TP21 Beit BC-16 to Crusher 6 700 6,	TP-09	Belt BC-05 to Belt BC-13	6	913	8,000,000	TC-FC	99
TP-11 Beit BC-05 to Beit BC-06 6 913 8,000,000 TC-FC TP-12 Beit BC-06 to Beit BC-07 6 913 8,000,000 TC-FC TP-13 Beit BC-07 to Stockpile 6 913 8,000,000 LO-RC TP-13 Beit BC-07 to Stockpile 6 913 8,000,000 LO-RC TP-14 Stockpile to Beit BC-13 6 1,400 12,264,000 LO-RC TP-15 Beit BC-14 to Synfuel Feed Stockpile 6 1,400 12,264,000 TC-FC TP-16 Beit BC-15 to Crusher CR-1/CR-2 6 1,400 12,264,000 TC-FC TP-17 Stockpile to Beit BC-15 6 1,400 12,264,000 TC-FC TP-18 Beit BC-15 to Crushers CR-1/CR-2 6 1,400 12,264,000 TC-FC TP19 Stockpile to Bin #4 6 700 6,132,000 LO-FC TP20 Bin #4 to Beit BC-16 6 700 6,132,000 LO-FC TP21 Beit BC-16 to Crusher 6 70	TP-10	Belt BC-13 to Stockpile	6	913	8,000,000	LO-RC	99
TP-12 Beit BC-06 to Beit BC-07 6 913 8,000,000 TC-FC TP-13 Beit BC-07 to Stockpile 6 913 8,000,000 LO-RC TP-14 Stockpile to Beit BC-13 6 1,400 12,264,000 LO-RC TP-15 Beit BC-13 to Beit BC-14 6 1,400 12,264,000 TC-FC TP-16 Beit BC-14 to Synfuel Feed Stockpile 6 1,400 12,264,000 TC-FC TP-17 Stockpile to Beit BC-15 6 1,400 12,264,000 TC-FC TP-18 Beit BC-15 to Crushers CR-1/CR-2 6 1,400 12,264,000 TC-FC TP-18 Beit BC-15 to Crushers CR-1/CR-2 6 1,400 12,264,000 TC-FC TP19 Stockpile to Bin #4 6 700 6,132,000 LO-FC TP20 Bin #4 to Beit BC-16 6 700 6,132,000 LO-FC TP21 Beit BC-16 to Crusher 6 700 6,132,000 CS-FC TP23 Screen SS-1 to Oversize Bett BC-17 6	TP-11	Belt BC-05 to Belt BC-06	6	913	8,000,000	TC-FC	99
TP-13 Belt BC-07 to Stockpile 6 913 8,000,000 LO-RC TP-14 Stockpile to Belt BC-13 6 1,400 12,254,000 LO-RC TP-15 Belt BC-13 to Belt BC-14 6 1,400 12,264,000 TC-FC TP-16 Belt BC-14 to Synfuel Feed Stockpile 6 1,400 12,264,000 TC-FC TP-17 Stockpile to Belt BC-15 6 1,400 12,264,000 TC-FC TP-18 Belt BC-15 to Crushers CR-1/CR-2 6 1,400 12,264,000 TC-FC TP-18 Belt BC-15 to Crushers CR-1/CR-2 6 1,400 12,264,000 TC-FC TP19 Stockpile to Bin #4 6 700 6,132,000 LO-FC TP20 Bin #4 to Belt BC-16 6 700 6,132,000 LO-FC TP21 Belt BC-16 to Crusher 6 700 6,132,000 CS-FC TP23 Screen SS-1 to Oversize Belt BC-17 6 0.23 2,000 LO-FC TP24 Belt BC-17 to Stockpile 6	TP-12	Belt BC-06 to Belt BC-07	6	913	8,000,000	TC-FC	99
TP-14 Stockpile to Belt BC-13 6 1,400 12,264,000 LO-RC TP-15 Belt BC-13 to Belt BC-14 6 1,400 12,264,000 TC-FC TP-16 Belt BC-14 to Synfuel Feed Stockpile 6 1,400 12,264,000 TC-FC TP-16 Belt BC-15 to Crushers CR-1/CR-2 6 1,400 12,264,000 TC-FC TP-18 Belt BC-15 to Crushers CR-1/CR-2 6 1,400 12,264,000 TC-FC TP-18 Belt BC-15 to Crushers CR-1/CR-2 6 1,400 12,264,000 TC-FC TP-18 Belt BC-16 to Crushers CR-1/CR-2 6 700 6,132,000 LO-FC TP20 Bin #4 to Belt BC-16 6 700 6,132,000 LO-FC TP21 Belt BC-16 to Crusher 6 700 6,132,000 CS-FC TP23 Screen SS-1 to Oversize Belt BC-17 6 0.23 2,000 LO-FC TP24 Belt BC-17 to Stockpile 6 0.23 2,000 LO-FC TP25 Oversize Stockpile to Feed Stockpi	TP-13	Belt BC-07 to Stockpile	6	913	8,000,000	LO-RC	99
TP-15 Belt BC-13 to Belt BC-14 6 1,400 12,264,000 TC-FC TP-16 Bett BC-14 to Synfuel Feed Stockpile 6 1,400 12,264,000 TC-FC TP-17 Stockpile to Belt BC-15 6 1,400 12,264,000 TC-FC TP-18 Bett BC-15 to Crushers CR-1/CR-2 6 1,400 12,264,000 TC-FC TP19 Stockpile to Bin #4 6 700 6,132,000 LO-FC TP20 Bin #4 to Belt BC-16 6 700 6,132,000 LO-FC TP21 Bett BC-16 to Crusher 6 700 6,132,000 TC-FC TP22 Crusher CR-1 to Screen SS-1 6 700 6,132,000 CS-FC TP23 Screen SS-1 to Oversize Belt BC-17 6 0.23 2,000 LO-FC TP24 Belt BC-17 to Stockpile 6 0.23 2,000 LO-FC TP25 Oversize Stockpile to Feed Stockpile 6 0.23 2,000 LO-FC TP26 Screen SS-1 to Belt BC-18 6 <t< td=""><td>TP-14</td><td>Stockpile to Belt BC-13</td><td>6</td><td>1,400</td><td>12,264,000</td><td>LO-RC</td><td>99</td></t<>	TP-14	Stockpile to Belt BC-13	6	1,400	12,264,000	LO-RC	99
TP-16 Bett BC-14 to Syntuel Feed Stockpile 6 1,400 12,264,000 TC-PC TP-17 Stockpile to Belt BC-15 6 1,400 12,264,000 TC-FC TP-18 Bett BC-15 to Crushers CR-1/CR-2 6 1,400 12,264,000 TC-FC TP19 Stockpile to Bin #4 6 700 6,132,000 LO-FC TP20 Bin #4 to Belt BC-16 6 700 6,132,000 LO-FC TP21 Bett BC-16 to Crusher 6 700 6,132,000 TC-FC TP22 Crusher CR-1 to Screen SS-1 6 700 6,132,000 CS-FC TP23 Screen SS-1 to Oversize Belt BC-17 6 0.23 2,000 LO-FC TP24 Belt BC-17 to Stockpile 6 0.23 2,000 LO-FC TP25 Oversize Stockpile to Feed Stockpile 6 0.23 2,000 LO-FC TP26 Screen SS-1 to Belt BC-18 6 700 6,132,000 TC-FC TP27 Belt BC-18 to Belt BC-19 6 70	TP-15	Belt BC-13 to Belt BC-14	6	1,400	12,264,000	TC-FC	99
TP-17 Stockpile to Belt BC-15 6 1,400 12,264,000 TC-FC TP-18 Belt BC-15 to Crushers CR-1/CR-2 6 1,400 12,264,000 TC-FC TP19 Stockpile to Bin #4 6 700 6,132,000 LO-FC TP20 Bin #4 to Belt BC-16 6 700 6,132,000 LO-FC TP21 Belt BC-16 to Crusher 6 700 6,132,000 TC-FC TP22 Crusher CR-1 to Screen SS-1 6 700 6,132,000 CS-FC TP23 Screen SS-1 to Oversize Belt BC-17 6 0.23 2,000 LO-FC TP24 Belt BC-17 to Stockpile 6 0.23 2,000 LO-FC TP25 Oversize Stockpile to Feed Stockpile 6 0.23 2,000 LO-FC TP26 Screen SS-1 to Belt BC-18 6 700 6,132,000 LO-FC TP27 Belt BC-18 to Belt BC-19 6 700 6,132,000 TC-FC TP27 Belt BC-19 to Pugmill Feed Bin BS-5 6 700 6,132,000 TC-FC TP28 Belt BC-19 to Pugmill Keer BS-6 </td <td>TP-16</td> <td>Beit BC-14 to Synfuel Feed Stockpile</td> <td>6</td> <td>1,400</td> <td>12,264,000</td> <td>TC-PC</td> <td>99</td>	TP-16	Beit BC-14 to Synfuel Feed Stockpile	6	1,400	12,264,000	TC-PC	99
TP-18 Belt BC-15 to Crushers CR-1/CR-2 6 1,400 12,264,000 TC-FC TP19 Stockpile to Bin #4 6 700 6,132,000 LO-FC TP20 Bin #4 to Belt BC-16 6 700 6,132,000 LO-FC TP21 Belt BC-16 to Crusher 6 700 6,132,000 TC-FC TP22 Crusher CR-1 to Screen SS-1 6 700 6,132,000 CS-FC TP23 Screen SS-1 to Oversize Belt BC-17 6 0.23 2,000 LO-FC TP24 Belt BC-17 to Stockpile 6 0.23 2,000 LO-FC TP25 Oversize Stockpile to Feed Stockpile 6 0.23 2,000 LO-FC TP26 Screen SS-1 to Belt BC-18 6 700 6,132,000 LO-FC TP26 Screen SS-1 to Belt BC-19 6 700 6,132,000 LO-FC TP27 Belt BC-19 to Pugmill Feed Bin BS-5 6 700 6,132,000 TC-FC TP28 Belt BC-19 to Pugmill Feed Bin BS-5 6 700 6,132,000 TC-FC TP30 Belt BC-20 to Pugmill Mi	TP-17	Stockpile to Belt BC-15	6	1,400	12,264,000	TC-FC	99
TP19 Stockpile to Bin #4 6 700 6,132,000 LO-FC TP20 Bin #4 to Belt BC-16 6 700 6,132,000 LO-FC TP21 Belt BC-16 to Crusher 6 700 6,132,000 TC-FC TP22 Crusher CR-1 to Screen SS-1 6 700 6,132,000 CS-FC TP23 Screen SS-1 to Oversize Belt BC-17 6 0.23 2,000 LO-FC TP24 Belt BC-17 to Stockpile 6 0.23 2,000 LO-FC TP25 Oversize Stockpile to Feed Stockpile 6 0.23 2,000 LO-FC TP26 Screen SS-1 to Belt BC-18 6 700 6,132,000 LO-FC TP26 Screen SS-1 to Belt BC-18 6 700 6,132,000 LO-FC TP27 Belt BC-18 to Belt BC-19 6 700 6,132,000 TC-FC TP28 Belt BC-19 to Pugmill Feed Bin BS-5 6 700 6,132,000 TC-FC TP29 Pug. Feed Bin to Belt BC-20 6 700 <	TP-18	Belt BC-15 to Crushers CR-1/CR-2	6	1,400	12,264,000	TC-FC	99
TP20 Bin #4 to Belt BC-16 6 700 6.132,000 LO-FC TP21 Belt BC-16 to Crusher 6 700 6.132,000 TC-FC TP22 Crusher CR-1 to Screen SS-1 6 700 6,132,000 CS-FC TP23 Screen SS-1 to Oversize Belt BC-17 6 0.23 2,000 LO-FC TP24 Belt BC-17 to Stockpile 6 0.23 2,000 LO-FC TP25 Oversize Stockpile to Feed Stockpile 6 0.23 2,000 LO-FC TP26 Screen SS-1 to Belt BC-18 6 700 6,132,000 LO-FC TP26 Screen SS-1 to Belt BC-18 6 700 6,132,000 LO-FC TP27 Belt BC-18 to Belt BC-19 6 700 6,132,000 TC-FC TP28 Belt BC-19 to Pugmill Feed Bin BS-5 6 700 6,132,000 TC-FC TP29 Pug. Feed Bin to Belt BC-20 6 700 6,132,000 TC-FC TP30 Belt BC-20 to Pugmill Mixer BS-6 6 700 </td <td>TP19</td> <td>Stockpile to Bin #4</td> <td>6</td> <td>700</td> <td>6,132,000</td> <td>LO-FC</td> <td>99</td>	TP19	Stockpile to Bin #4	6	700	6,132,000	LO-FC	99
TP21 Bett BC-16 to Crusher 6 700 6,132,000 TC-FC TP22 Crusher CR-1 to Screen SS-1 6 700 6,132,000 CS-FC TP23 Screen SS-1 to Oversize Bett BC-17 6 0.23 2,000 LO-FC TP24 Belt BC-17 to Stockpile 6 0.23 2,000 LO-FC TP25 Oversize Stockpile to Feed Stockpile 6 0.23 2,000 LO-FC TP26 Screen SS-1 to Bett BC-18 6 700 6,132,000 LO-FC TP26 Screen SS-1 to Bett BC-19 6 700 6,132,000 LO-FC TP27 Bett BC-18 to Bett BC-19 6 700 6,132,000 TC-FC TP28 Bett BC-19 to Pugmill Feed Bin BS-5 6 700 6,132,000 TC-FC TP29 Pug. Feed Bin to Bett BC-20 6 700 6,132,000 LO-FC TP30 Bett BC-20 to Pugmill Mixer BS-6 6 700 6,132,000 TC-FC	TP20	Bin #4 to Belt BC-16	6	700	6,132,000	LO-FC	99
TP22 Crusher CR-1 to Screen SS-1 6 700 6,132,000 CS-FC TP23 Screen SS-1 to Oversize Belt BC-17 6 0.23 2,000 LO-FC TP24 Belt BC-17 to Stockpile 6 0.23 2,000 TC-PC TP25 Oversize Stockpile to Feed Stockpile 6 0.23 2,000 LO-FC TP26 Screen SS-1 to Belt BC-18 6 700 6,132,000 LO-FC TP26 Screen SS-1 to Belt BC-19 6 700 6,132,000 LO-FC TP27 Belt BC-18 to Belt BC-19 6 700 6,132,000 TC-FC TP28 Belt BC-19 to Pugmill Feed Bin BS-5 6 700 6,132,000 TC-FC TP29 Pug. Feed Bin to Belt BC-20 6 700 6,132,000 LO-FC TP30 Belt BC-20 to Pugmill Mixer BS-6 6 700 6,132,000 TC-FC	TP21	Belt BC-16 to Crusher	6	700	6,132,000	TC-FC	99
TP23 Screen SS-1 to Oversize Belt BC-17 6 0.23 2,000 LO-FC TP24 Belt BC-17 to Stockpile 6 0.23 2,000 TC-PC TP25 Oversize Stockpile to Feed Stockpile 6 0.23 2,000 LO-FC TP25 Oversize Stockpile to Feed Stockpile 6 0.23 2,000 LO-RC TP26 Screen SS-1 to Belt BC-18 6 700 6,132,000 LO-FC TP27 Belt BC-18 to Belt BC-19 6 700 6,132,000 TC-FC TP28 Belt BC-19 to Pugmill Feed Bin BS-5 6 700 6,132,000 TC-FC TP29 Pug. Feed Bin to Belt BC-20 6 700 6,132,000 LO-FC TP30 Belt BC-20 to Pugmill Mixer BS-6 6 700 6,132,000 TC-FC	TP22	Crusher CR-1 to Screen SS-1	6	700	6,132,000	CS-FC	99
TP24 Belt BC-17 to Stockpile 6 0.23 2,000 TC-PC TP25 Oversize Stockpile to Feed Stockpile 6 0.23 2,000 LO-RC TP26 Screen SS-1 to Belt BC-18 6 700 6,132,000 LO-FC TP27 Belt BC-18 to Belt BC-19 6 700 6,132,000 TC-FC TP28 Belt BC-19 to Pugmill Feed Bin BS-5 6 700 6,132,000 TC-FC TP29 Pug. Feed Bin to Belt BC-20 6 700 6,132,000 LO-FC TP30 Belt BC-20 to Pugmill Mixer BS-6 6 700 6,132,000 TC-FC	TP23	Screen SS-1 to Oversize Belt BC-17	6	0.23	2,000	LO-FC	99
TP25 Oversize Stockpile to Feed Stockpile 6 0.23 2,000 LO-RC TP26 Screen SS-1 to Belt BC-18 6 700 6,132,000 LO-FC TP27 Belt BC-18 to Belt BC-19 6 700 6,132,000 TC-FC TP28 Belt BC-19 to Pugmill Feed Bin BS-5 6 700 6,132,000 TC-FC TP29 Pug. Feed Bin to Belt BC-20 6 700 6,132,000 LO-FC TP30 Belt BC-20 to Pugmill Mixer BS-6 6 700 6,132,000 TC-FC	TP24	Belt BC-17 to Stockpile	6	0.23	2,000	TC-PC	99
TP26 Screen SS-1 to Belt BC-18 6 700 6,132,000 LO-FC TP27 Belt BC-18 to Belt BC-19 6 700 6,132,000 TC-FC TP28 Belt BC-19 to Pugmill Feed Bin BS-5 6 700 6,132,000 TC-FC TP29 Pug. Feed Bin to Belt BC-20 6 700 6,132,000 LO-FC TP30 Belt BC-20 to Pugmill Mixer BS-6 6 700 6,132,000 LO-FC	TP25	Oversize Stockpile to Feed Stockpile	6	0.23	2,000	LO-RC	99
TP27 Belt BC-18 to Belt BC-19 6 700 6,132,000 TC-FC TP28 Belt BC-19 to Pugmill Feed Bin BS-5 6 700 6,132,000 TC-FC TP29 Pug. Feed Bin to Belt BC-20 6 700 6,132,000 LO-FC TP30 Belt BC-20 to Pugmill Mixer BS-6 6 700 6,132,000 LO-FC	TP26	Screen SS-1 to Belt BC-18	6	700	6,132,000	LO-FC	99
TP28 Belt BC-19 to Pugmill Feed Bin BS-5 6 700 6,132,000 TC-FC TP29 Pug. Feed Bin to Belt BC-20 6 700 6,132,000 LO-FC TP30 Belt BC-20 to Pugmill Mixer BS-6 6 700 6,132,000 TC-FC	TP27	Belt BC-18 to Belt BC-19	6	700	6,132,000	TC-FC	99
TP29 Pug. Feed Bin to Belt BC-20 6 700 6,132,000 LO-FC TP30 Belt BC-20 to Pugmill Mixer BS-6 6 700 6,132,000 TC-FC	TP28	Belt BC-19 to Pugmill Feed Bin BS-5	6	700	6,132,000	TC-FC	99
TP30 Belt BC-20 to Pugmill Mixer BS-6 6 700 6,132,000 TC-FC	TP29	Pug. Feed Bin to Belt BC-20	6	700	6,132,000	LO-FC	99
	TP30	Belt BC-20 to Pugmill Mixer BS-6	6	700	6,132,000	TC-FC	99
11P31 Pug. Mixer to Belt BC-21 8 1 /00 [6,132,000 LO-FC]	TP31	Pug. Mixer to Belt BC-21	8	700	6,132,000	LO-FC	99
TP32 Belt BC-21 to Belt BC-22 8 700 6,132,000 TC-FC	TP32	Belt BC-21 to Belt BC-22	8	700	6,132,000	TC-FC	99
TP33 Belt BC-22 to Briquetter #1 8 233 2,044,000 TC-FC	TP33	Belt BC-22 to Briquetter #1	8	233	2,044,000	TC-FC	99

11234	Briguetter #1 to Belt BC-23	8	233	2.044.000	LO-FC	99
ГР35	Belt BC-23 to Belt BC-26	8	233	2,044,000	TC-FC	99
P36	Belt BC-22 to Briquetter #2	8	233	2,044,000	TC-FC	99
				·		
P37	Briquetter #2 to Belt BC-24	8	233	2,044,000	LO-FC	99
P38	Belt BC-24 to Belt BC-26	8	233	2,044,000	TC-FC	99
rP39	Belt BC-22 to Briquetter #3	8	233	2,044,000	TC-FC	99
P40	Briquetter #3 to Belt BC-25	8	233	2,044,000	LO-FC	99
P41	Belt BC-25 to Belt BC-26	8	233	2,044,000	TC-FC	99
P42	Belt BC-26 to Screen SS-2	8	700	6,132,000	TC-FC	99
[P43	Screen SS-2 to Recirculating belt BC-27	8	0.23	2,000	LO-FC	99
P44	Screen SS-2 to Belt BC-28	8	700	6,132,000	LO-FC	99
P45	Belt BC-28 to Belt BC-29	8	700	6,132,000	TC-FC	99
P46	Belt BC-29 to Synfuel Stockpile OS-7	8	700	6,132,000	TC-FC	99
P4/	Stockpile to Bin #7	6		0,132,000	LO-RC	
P48	Bin # / to Belt BC-30	6	- 700	0,132,000		
P49	Beit BC-30 to Crusher	6		6,132,000	IC-FC	
HOU	Crusher CK-2 to Screen 55-3		$+\frac{100}{200}$	0,132,000		
1050	Bell BC 21 to Oversize Bell BC-31		0.23	2,000		33
P52	Beit BC-31 to OversizeStockpile	• •	0.23	2,000		99
P53	Oversize Stockpile to Feed Stockpile	6	0.23	2,000	LO-RC	99
P54	Screen SS-3 to Belt BC-32	6	700	6,132,000	LO-FC	99
P55	Belt BC-32 to Belt BC-33	6	700	6,132,000	TC-FC	99
P56	Belt BC-33 to Pugmill Feed Bin BS-8	6	700	6,132,000	TC-FC	99
P57	Pug. Feed Bin to Belt BC-34	6	700	6,132,000	LO-FC	99
P58	Belt BC-34 to Pugmill Mixer BS-9	6	700	6,132,000	TC-FC	99
P59	Pug. Mixer to Belt BC-35	8	700	6,132,000	LO-FC	99
P60	Belt BC-35 to Belt BC-36	8	700	6,132,000	TC-FC	99
P61	Belt BC-36 to Briquetter #4	8	233	2,044,000	TC-FC	99
P62	Briquetter #4 to Belt BC-37	8	233	2,044,000	LO-FC	99
P63	Belt BC-37 to Belt BC-40	8	233	2,044,000	TC-FC	99
P64	Belt BC-36 to Briquetter #5	8	233	2,044,000	TC-FC	99
P65	Briquetter #5 to Beit BC-38	8	233	2,044,000	LO-FC	99
P66	Belt BC-38 to Belt BC-40	8	233	2,044,000	TC-FC	99
P67	Belt BC-36 to Briquetter #6	8	233	2,044,000	TC-FC	99
P68	Briquetter #6 to Bett BC-39	8	233	2,044,000	LO-FC	99
P69	Belt BC-39 to Belt BC-40	8	233	2,044,000	TC-FC	99
P70	Belt BC-40 to Screen SS-4	8	700	6,132,000	TC-FC	99
P71	Screen SS-4 to Recirculating belt BC-41	8	0.23	2,000	LO-FC	99
P72	Screen SS-4 to Belt BC-42	8	0.23	2,000	LO-FC	99
P73	Belt BC-42 to Belt BC-43	8	700	6,132,000	TC-FC	99
P74	Belt BC-43 to Synfuel Stockpile OS-7	88	700	6,132,000	TC-PC	99
P75	Synfuel Stockpile to Belt BC-44	8	700	6,132,000	LO-FC	99
P76	Belt BC-44 to Belt BC-13	8	1,400	12,264,000	TC-FC	99
P77	Coal/Coke Stockpile to Belt BC-13	6	1,340	11,736,000	LO-RC	99
P78	Belt BC-13 to Belt BC-06	7	2,740	24,000,000	TC-FC	99
P79	Belt BC-06 to Belt BC-08	7	2,740	24,000,000	TC-FC	99
P80	Belt BC-08 to Belt BC-09	7	2,740	24,000,000	TC-FC	99
P81	Beit BC-09 to Surge Silo #2 BS-2	7	1,370	12,000,000	TC-BH	99
P82	Silo BS-2 to Belt BC-12	7	1,370	112,000,000	LO-BH	99
P83	Belt BC-09 to Belt BC-11	7	1,370	12,000,000	TC-FC	99
<u>P84</u>	Belt BC-11 to Surge Silo #3 BS-3	7	1,370	12,000,000	TC-BH	99
<u>P85</u>	SHO BS-3 to Belt BC-12	7	1,370	12,000,000	LO-BH	
<u>~86</u>	Beit BC-12 to Beit BC-10	7	2,740	24,000,000	TC-FC	99
	INAR MIT 10 to Deres	. 7	■ 3740			00

 \sim

Page 2

							• •
Т	P88	Belt #3 to Belt #45	6	2,740	24,000,000	TC-FC	99
Т	P89	Belt #45 to Belt #13	6	2,740	24,000,000	TC-FC	99
IT.	P90	Belt #13 to Belt #46	6	2,740	24,000,000	TC-FC	99
T	P91	Belt #46 to Belt #4	6	2,740	24,000,000	TC-FC	_ 99
T	P92	Belt #4 to Belt #47	6	2,740	24,000,000	TC-FC	99
T	P93	Belt to Belt #48	6	2,740	24,000,000	TC-FC	99
Ĭ.							

•

Page 3

3. WIND EROSION OF STOCKPILES (including all stockpiles of raw coal, clean coal, coal refuse, etc.)

p =	number of days per year with precipitation >0.01 inch	157
f =	percentage of time that the unobstructed wind speed	20 NWS Data
	exceeds 12 mph at the mean pile height	

Source	Stockpile	Silt	Stockpile	Control	Control
ID No	Description	Content of base area		Device	Efficiency
		Material %	Max. sqft	ID Number	%
OS-1	CC/Coke or Synfuel	35	440.670	SW-CS	99
OS-2	CC/Coke or Synfuel	3.5	388,125	SW-CS	99
OS-3	CC/Coke or Synfuel	3.5	388,125	SW-CS	99
OS-4	CC/Coke or Synfuel	3.5	504,000	SW-CS	99
OS-5	CC	3.5	200,000	SW-CS	99
OS-6	CC	3.5	1,000	SW-CS	99
OS-7	Synfuel	3.5	200,000	SW-CS	99
	<u> </u>				
······································					

INPUTS

4. UNPAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

		PM	PM-10
k =	particle size multiplier	0.80	0.36
S =	silt content of road surface material (%)	5	
p =	number of days per year with precipitation >0.01 inch	157	

ltem Number	Description	Number of wheels	Mean Vehicle Weight(tons)	Mean Vehicle Speed (mph)	Miles per Trip	Maximum Trips Per Hour	Maximum Trips Per Year	Control Device ID Number	Control Efficiency %
1	NO CHANGE RECOMMENDE	D							
2		T					· · · ·		
3									
4									
5									
6									
7									
8									
9									

5 . I	NDUSTRIAL PAVED HAULROADS	(including all equipment traffic involved in process, haul trucks, etc.)	
--------------	---------------------------	--	--

=	Industrial augmentation factor (dimension less)	
n =	number of traffic lanes	2
s =	surface material silt content (%)	3
L =	surface dust loading (lb/mile)	13300

•

ItemDescriptionVehicleperTripsTripsPerDeviceEfficiencyNumberNO CHANGE RECOMMENDEDTripHourYearID Number%2	- 11			Mean	Miles	Maximum	Maximum	Control	Control
Number Weight (tons) Trip Hour Year ID Number % 1 NO CHANGE RECOMMENDED <	ſ	ltem	Description	Vehicle	per	Trips Per	Trips Per	Device	Efficiency
1 NO CHANGE RECOMMENDED	L	Number		Weight (tons)	Trip	Hour	Year	ID Number	%
NO CHANGE RECOMMENDED Image: Commended point 2 1	-								
2 3 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>{</td> <td></td> <td></td>							{		
3 4 1 1 1 1 5 5 1 1 1 1 6 1 1 1 1 1 7 1 1 1 1 1 8 1 1 1 1 1	┞			 	- <u> </u>				
4 5 5 6 7 6 8 6	╟								
					·				
	╟								
8	╟				· · · · · · · · · · · · · · · · · · ·			····	
	╟	8							
	╟								
	Ш_	···-							

.

•

		Name of applicant: Name of plant:	Dominion Terminal Pier 11 Facility	Associates
Particulate Matter or PM (for	Major Source [Determination)		
	Uncont	rolled PM	Contro	lled PM
	lb/hr	TPY	lb/hr	TPY
	FUGITI\	/E EMISSIONS		
Stockpile Emissions	9.50	41.62	0.10	0.42
Unpaved Haulroad Emissions	0.00	0.00	0.00	0.00
Paved Haulroad Emissions	0.00	0.00	0.00	0.00
Fugitive Emissions Total	9.50	41.62	0.10	0.42
Equipment Emissions Transfer Point Emissions	POINT SO 84.00 100.37	URCE EMISSIONS 367.92 466.04	0.84	3.68 4.64
Point Source Emissions Total*	184.37	833.96	1.84	8.32
Note: Point Source Total Controlled PM TPY	emissions is used for	Major Source determination	on (see below)	
			1	
Facility Emissions Total	193.87	875.58	1.93	8.74
Facility Emissions Total *Facility Potential to Emit (P	<u>193.87</u> TE) (Baseli	875.58 ne Emissions)	<u> 1.93</u> =	8.74

	Uncontro	olled PM-10	Contro	lled PM-10
	lb/hr	TPY	lb/hr	TPY
	FUGITIV	EMISSIONS		
Stockpile Emissions	4.47	19.56	0.04	0.20
Unpaved Haulroad Emissions	0.00	0.00	0.00	0.00
Paved Haulroad Emissions	0.00	0.00	0.00	0.00
Fugitive Emissions Total	4.47	19.56	0.04	0.20
	POINT SO	JRCE EMISSIONS		
Equipment Emissions	39.48	172.92	0.39	1.73
Transfer Point Emissions	47.29	219.56	0.47	2.20
		202.40	0.07	2.02

Facility Emissions Total	91.24	412.05	0.91	4.12

1. Emissions From CRUSHING AND SCREENING

		PM						
	Uncontro	olled	Control	led	Uncontro	olled	Control	fed
EMISSION SOURCE	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
Primary Crushing	14.00	61.32	0.14	0.61	6.58	28.82	0.07	 0.29
Secondary Crushing	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Screening	70.00	306.60	0.70	3.07	32.90	144.10	0.33	1.44
TOTAL	84.00	367.92	0.84	3.68	39.48	172.92	0.39	1.73

Source:

Air Pollution Engineering Manual and References

EMISSION FACTORS

Primary Crushing

Ib/ton processed (maximum raw coal input) Ib/ton processed (maximum raw coal input) Ib/ton processed (maximum raw coal input)

Assumption that PM-10 is 47% of PM (based on particle size multiplier)

2. Emissions From TRANSFER POINTS

. .

Transfer		P	M			PM	-10	
Point	Uncor	ntrolled	Cont	rolled	Uncon	trolled	Cont	rolled
ID No	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
TP-01	1.83	8.01	0.02	0.08	0.86	3.79	0.01	0.04
TP-02	1.83	8.01	0.02	0,08	0.86	3.79	0.01	0.04
TP-03	3.66	16.01	0.04	0.16	1.73	7.57	0.02	0.08
TP-04	3.66	16.01	0.04	0.16	1.73	7.57	0.02	0.08
TP-05	3.66	16.01	0.04	0.16	1.73	7.57	0.02	0.08
TP-06	1.22	5.34	0.01	0.05	0.58	2.52	0.01	0.03
TP-07	1.22	5.34	0.01	0.05	0.58	2.52	0.01	0.03
TP-08	2.44	10.68	0.02	0.11	1.15	5.05	0.01	0.05
TP-09	1.22	5.34	0.01	0.05	0.58	2.52	0.01	0.03
TP-10	1.22	5.34	0.01	0.05	0.58	2.52	0.01	0.03
TP-11	1.22	5.34	0.01	0.05	0.58	2.52	0.01	0.03
TP-12	1.22	5.34	0.01	0.05	0.58	2.52	0.01	0.03
TP-13	1.22	5.34	0.01	0.05	0.58	2.52	0.01	0.03
TP-14	1.87	8.18	0.02	0.08	0.88	3.87	0.01	0.04
TP-15	1.87	8.18	0.02	0.08	0.88	3.87	0.01	0.04
TP-16	1.87	8.18	0.02	80.0	0.88	3.87	0.01	0.04
TP-17	1.87	8.18	0.02	0.08	0.88	3.87	0.01	0.04
TP-18	1.87	8.18	0.02	0.08	0.88	3.87	0.01	0.04
TP19	0.93	4.09	0.01	0.04	0.44	1.94	0.00	0.02
TP20	0.93	4.09	0.01	0.04	0.44	1.94	0.00	0.02
TP21	0.93	4.09	0.01	0.04	0.44	1.94	0.00	0.02
TP22	0.93	4.09	0.01	0.04	0.44	1.94	0.00	0.02
TP23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TP24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TP25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TP26	0.93	4.09	0.01	0.04	0.44	1.94	0.00	0.02
TP27	0.93	4.09	0.01	0.04	0.44	1.94	0.00	0.02
TP28	0.93	4.09	0.01	0.04	0.44	1.94	0.00	0.02
TD29	0,93	4.09	0.01	0.04	0.44	1.94	0.00	0.02
TD24	0.93	4.09	0.01	0.04	0.44	1.94	0.00	0.02
17020	0.62	2.73	0.01	0.03	0.30	1.29	0.00	
TP32	0.62	2.73	0.01	0.03	0.30	1.29	0.00	0.01
	0.21	0.91	0.00	0.01		0.43	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00		0.00
TD25	0.21	0.91	0.00	0.01	0.10	0.43	0.00	
		0.91	0.00	0.01	0.10	0.45		0.00
TD27	0.21	0.91		0.01	0.10	0.45		0.00
TD29		0.91	0.00	0.01		0.43		
TPRO	0.21	0.91	0.00	0.01		0.45		
TPAN	0.21 0.21	0.91	0.00	0.01	0.10	0.45	0.00	
	<u> </u>	<u> </u>	0.00	0.01	0.10	0.40	0.00	
TP42	0.62	273	0.00	0.01	0.10	1 20		0.00
TP43	0.02	<u>~.75</u>	0.01	0.00	0.00	0.00	<u> </u>	
TP44	Ca 0	273	0.00	0.00	0.00	1 20		0.00
TP45	0.62	2 73	0.01	0.00	0.00	1 29	0.00	0.01
TP46	0.62	2 73	0.01	0.03	0.30	1 29	0.00	0.01
TP47	0.93	4 09	0.01	0 04	0 44	1 94	0.00	0.02
TP48	0.93	4 09	0.01	0.04	0 44	1 94	0.00	0.02
TP49	0.93	4 09	0.01	0.04	0 44	1 94	0.00	0.02
TP50	0.93	4 09	0.01	0.04	0 44	1 94	0.00	0.02
TP51	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TP52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TP54	0.93	4.09	0.01	0.04	0.44	1.94	0.00	0.02
TP55	0.93	4.09	0.01	0.04	0.44	1.94	0.00	0.02
TP56	0.93	4.09	0.01	0.04	0.44	1.94	0.00	0.02
TP57	0.93	4.09	0.01	0.04	0.44	1.94	0.00	0.02
TP58	0.93	4.09	0.01	0.04	0.44	1.94	0.00	0.02
TP59	0.62	2.73	0.01	0.03	0.30	1.29	0.00	0.01
TP60	0.62	2.73	0.01	0.03	0.30	1.29	0.00	0.01
TP61	0.21	0.91	0.00	0.01	0.10	0.43	0.00	0.00

TP62	0.21	0.91	0.00	0.01	0.10	0.43	0.00	0.00
TP63	0.21	0.91	0.00	0.01	0.10	0.43	0.00	0.00
	0.21	0.91	0.00	0.01	0.10	0.43	0.00	0.00
TDES	0.21	0.01	0.00	0.01	0.10	0.43	0.00	0.00
	0.21	0.91	0.00		0.10	0.43	0.00	0.00
	0.21	0.91	0.00	0.01	0.10	0.43		0.00
	0.21	0.91	0.00	0.01	0.10	0.43	0.00	0.00
	0.21	0.91	0.00	0.01	0.10	0.43	0.00	0.00
	0.21	0.91	0.00	0.01	0.10	0.43	0.00	0.00
	0.62	2.73	0.01	0.03	0.30	1.29	0.00	0.01
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
<u>1P72</u>	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TP73	0.62	2.73	0.01	0.03	0.30	1.29	0.00	0.01
TP74	0.62	2.73	0.01	0.03	0.30	1.29	0.00	0.01
TP75	0.62	2.73	0.01	0.03	0.30	1.29	0.00	0.01
TP-76	1.22	5.47	0.01	0.05	0.58	2.59	0.01	0.03
TP77	1.22	7.83	0.01	0.08	0.58	3.70	0.01	0.04
TP78	1.22	12.90	0.01	0.13	0.58	6.10	0.01	0.06
TP79	1.22	12.90	0.01	0.13	0.58	6.10	0.01	0.06
TP80	1.22	12.90	0.01	0.13	0.58	6.10	0.01	0.06
TP81	1.22	6.45	0.01	0.06	0.58	3.05	0.01	0.03
TP82	1.47	6.45	0.01	0.06	0.70	3.05	0.01	0.03
TP83	1.47	6.45	0.01	0.06	0.70	3.05	0.01	0.03
TP84	1.47	6.45	0.01	0.06	0.70	3.05	0.01	0.03
TP85	1.47	6.45	0.01	0.06	0.70	3.05	0.01	0.03
TP86	2.95	12.90	0.03	0.13	1.39	6.10	0.01	0.06
TP87	2.95	12.90	0.03	0.13	1.39	6.10	0.01	0.06
TP89	3.66	16.01	0.04	0.16	1.73	7.57	0.02	0.08
TP90	3.66	16.01	0.04	0.16	1.73	7.57	0.02	0.08
TP91	3.66	16.01	0.04	0.16	1.73	7.57	0.02	0.08
TP92	3.66	16.01	0.04	0.16	1.73	7.57	0.02	0.08
ТР93	3.66	16.01	0.04	0.16	1.73	7.57	0.02	0.08
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ö	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTALS	100.37	466.04	1.00	4.64	47.29	219.56	0.47	2.20

· .

2. Emissions From TRANSFER POINTS (Continued) Source: AP-42 Fifth Edition 13.2.4 Aggregate Handling and Storage Piles Emissions From Batch Drop $E = k^{*}(0.0032) * [(U/5)^{1.3}/[(M/2)^{1.4}] = pounds/ton$ PM PM-10 Where: Particle Size Multiplier (dimensionless) 0.35 0.74 **k** = Mean Wind Speed (mph) U = Material Moisture Content (%) M =

•

Assumptions:		
k - Particle size mult For PM (< or equal to For PM-10 (< or equa	tiplier 30um) k = I to 10um) k =	0.74 0.35
For PM	E(M) =	0.0062125 *[1/((M/2)^1.4)] = pounds/ton
For PM-10	E(M) =	0.0029383 *[1/((M/2)^1.4)] = pounds/ton
For Ib/hr	[lb/ton]*[ton	/hr] = [lb/hr]
For Tons/year	[lb/ton]*[ton	/yr]*[ton/2000lb] = [ton/yr]

3. Emissions From WIND EROSION OF STOCKPILES

Stockpile		PN	<u></u>		PM-10				
ID No	Uncont	rolled	Contro	lled	Uncont	rolled	Contro	olled	
	lb/hr	TPY	lb/hr	ŢPY	lb/hr	TPY	lb/hr	TPY	
OS-1	1.97	8.64	0.02	0.09	0.93	4.06	0.01	0.04	
OS-2	1.74	7.61	0.02	0.08	0.82	3.58	0.01	0.04	
OS-3	1.74	7.61	0.02	0.08	0.82	3.58	0.01	0.04	
OS-4	2.26	9.88	0.02	0.10	1.06	4.65	0.01	0.05	
OS-5	0.90	3.92	0.01	0.04	0.42	1.84	0.00	0.02	
OS-6	0.00	0.02	0.00	0.00	0.00	0.01	0.00	0.00	
OS-7	0.90	3.92	0.01	0.04	0.42	1.84	0.00	0.02	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Ō	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
TOTALS	9.50	41.62	0.10	0.42	4.47	19.56	0.04	0.20	

Source:

• 2.5

Air Pollution Engineering Manual

Storage Pile Wind Erosion (Active Storage)

 $E = 1.7^{*}[s/1.5]^{*}[(365-p)/235]^{*}[f/15] = (lb/day/acre)$

Where:

<u>S</u> =	sut content of material									
p =	number of days with >0.01 inch of precipitation per year									
f =	percentage of time that the unobstructed wind speed									
	exceeds 12 mph at the mean pile height									
For PM	E(s)= 1.3374941 * s = lb/dav/acre									
For DM-10	$E(s) = 0.6286222 + s = lb/day/acre}$									
	L(3) = 0.0200222 - 0.0000000000000000000000000									
Ear th/hr	[]b/dov/corol#[dov/9.4br]#[booc.coroc.of.mile.(coroc.)](b/br									
FOLIDAD	[ib/day/acre] [day/24nr]*[base area of pile (acres)] = ib/nr									
F T (
For I on/yr	$[iD/day/acre]^[365day/yr]^[10n/2000ib]^[base area of pile (acres)] = 10n/yr$									

4. Emissions From UNPAVED HAULROADS

: ·

.

ltem		P	М			PM	-10	
No.	Uncon	trolled	Contre	olled	Uncon	trolled	Contr	olled
[lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
	0.00	0.00	0.00			0.00		
	0.00	0.00	0.00	0.00		0.00	0.00	
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
d	0.00	0.00	0.00	0.00	0.00	0.00		0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OTALS	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
<pre>3.2.2 Unp 5.2.2 Unp inission E:</pre>	stimate For (s/12)*(S/3 particle size	Unpaved Hat 0)*(W/3)^0.7	ulroads *(w/4)^0.5*(((365-p)/365)	= Ib / Vehicle	e Mile Travel	ed (VMT)	
$\frac{S}{S} = \frac{1}{2}$	Mean vehic	le speed (mr	ice material (70)				
w = 1	Mean vehic	le weight (tor	ns)					
w =	mean numt	per of wheels	per vehicle					
p =	number of o	days per year	with precipi	tation >0.01	inch			
ssumption - Particle or PM (< o or PM-10 (s: size multip or equal to 30 (< or equal to	o lier Dum) k = 5 10um) k =	0.80 0.36					
or PM		E(S,W,w)≍	1.1207306	*(S/30) * [(W	//3)^0.7]*[(w/	4)^0.5] = \b/\ 4)40.5] = \b/	VMT	
or PM-10	,	E(S,₩,₩)= [[6Δ/ 84 T1 + Ⴊ/	U.5043288	"(S/30) " [(W	//3)^().7]*[(W/	4)^U.5] = lb/\	VIVI I	
	r ([ID/ VIVI I] [V		$\frac{1}{1} = \frac{1}{1} = \frac{1}$		= Topelvoo	r	
or rousely	•	firm a lari T - F A	wurn h l fa	iha i cail (- ionavyed	I	

· - ·

5. Emissions From INDUSTRIAL PAVED HAULROADS

•

No			PM				-10	
		olled	Contr	olled		rolled	Contro	
	io/nr	IPY	ID/nr	IPY				
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.(
6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.(
7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
TOTALS	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
11.2.6 IND Emission Es E = 0.077 *	JSTRIAL PAY stimate For Pa	VED ROAD ived Haulroa	S ads * [W/3]^0.7	= lb / Vehicl	e Mile Travel	ed (VMT)		
=	Industrial au	gmentation	factor (dimer	nsionless)				
= n =	Industrial au number of tr	igmentation affic lanes	factor (dimer	nsionless)				
= n = s =	Industrial au number of tr surface mat	igmentation affic lanes erial silt con	factor (dimer tent (%)	nsionless)				
= n = s = L =	Industrial au number of tr surface mat surface dus	igmentation affic lanes erial silt cont t loading, (lb	factor (dimer tent (%) v/mile)	nsionless)				
= n = s = L = W =	Industrial au number of tr surface mat surface dus average veh	igmentation affic lanes erial silt cont t loading, (lb icle weight,	factor (dimer tent (%) v/mile) (ton)	nsionless)				

5. Emissions From INDUSTRIAL PAVED HAULROADS

Item	PM				PM-10			
No	Uncontrolled		Controlled		Uncontrolled		Controlled	
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTALS	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Source: AP-42 83' Edition 11.2.6 INDUSTRIAL PAVED ROADS

Emission Estimate For Paved Haulroads

E = 0.077 * I * [4/n] * [s/10] * [L/1000] * [W/3]^0.7 = Ib / Vehicle Mile Traveled (VMT)

Where:

=	Industrial augmentation factor (dimensionless)
<u> </u>	number of traffic lanes

	number of traffic lanes
s =	surface material silt content (%)
L =	surface dust loading, (lb/mile)
- W =	average vehicle weight, (ton)
For PM	$E(W) = 0.61446 [W/3]^0.7 = (Ib/VMT)$
For PM-10	$E(W) = 0.2887962 [(W/3)^0.7] = (Ib/VMT)$
For Ib/hr	[lb/VMT] * [VMT/trip] * [Trips/Hour] = lb/hr
For Tons/y	<pre>r [lb/VMT] * [VMT/trip] * [Trips/Year] * [Ton/2000lb] = Tons/year</pre>

provide the chemical bonding required in the SynFuel manufacturing process.

without any adverse effect to utilization or the environment.

FIE-TOO Benedts I. Freduced from natural polymers: Environmentally renewable

TESOUTC2.

3. Eon viscosier for sass of application.

Nery stable emuision eliminares

heren storage

5. Remanently bonds to the fiel

SynFuel samples producted with FIE-100 submitted to

Combustion Resources, in for Fourier-transformed

infined (FIR) analysis obtained the following indicated

ciunge.

- Neural oH protzen equipment from
- correston and description.
- 7. Retains fuel compartion & contine
- 2702010
- Positive ZTU addition of
 - approximately 3,300 BTULL.
- . 9. Ann and sulfar addition of less than . 0.00126 -
- 10. Positive environmental impact.

Telephone (724) 941-3076 FAX (724) 941-9464

• · . i. • -

•

•

4

· 🔾

Technical Data Sheet

•

Product: FTH-100

RCRA Metals

.

•

Metals	Result	EPA Method
Arsenic	<1.0	206.2
Barium	<1.0	200.7
Cadmium	<0.05	200.7
Chromlum	<1.0	200.7
Lead	0.22	239.2
Mercury	<0.002	245.1
Selenium	<0.5	270.2
Silver	<2.0	200.7

۰.

All data reported in mg/l

¥90---E00'a ZSO-1 -

-

•

Υ.

•

•

.

.

: . •

-•

. 1.17

Technical Data Sheet

•• •

•

÷.

.

•

.

.

Product: FTH-100

Semi-Volatile Organics by Method 8270

.

CAS#	Compound	Concentration (ug/K	<u>(2)</u>
67-75-9	N-Nitmsodimethylamine	8,000	U
110_26_1	Puridine	8,000	U
97_63_7	Ethvi methacrvlate	8,000	U
173-63-7	Paraldehydc	8,000	U
	2-Picoline	16,000	U
10505-05-6	Nitrosomethylethylamine	8,000	U
66_27_3	Methyl methanesulfonate	8,000	ប
108-95-7	Phenol	8,000	U
55-18-5	N-Nitrosodiethylamine	8,000	U
62-50-5	Ethvl methanesulfonate	8,000	U
62-53-3	Aniline	8,000	U
76_01_7	Pentachlomethane	8,000	U
111_14_4	his (7-Chiorocthyl) ether	16,000	U
Q5_57_R	2-Chlorophenol	8,000	U
541_73_1	13-Dichlombenzene	8,000	U
100_44_7	Renzyl chloride	8,000	U
106-46-7	1 4 Dichlombenzene	8,000	U
100-51-6	Benzyl alcohol	8,000	U
95-50-1	1 2-Dichlombenzene	8,000	Ų
95_48_7	2-Methylohcool	8,000	U
30638_32.0	his (2-Chloroisonrooyl) ether	8,000	U
102-39-4	3-Methvinhenol	8,000	U
106-44-5	4 Methylphenol	8,000	U
930-55-2	N-Nitrosonvrrolidine	8,000	U
59-89-2	N-Nitrosomorpholine	8,000	U
98-86-2	Acetophenone	8,000	U
621-64-7	N-Nitroso-Di-n-Propylamine	8,000	U
636-21-5	o-Toluidine hydrochloride	8,000	U
67-72-1	Hexachlorosthane	000,8	U
98-95-3	Nitrobenzene	8,000	U

T-052 P.004/018 F-054

Page 2

•

.

.

•

Product: FTH-100

• • • •

Semi-Volatile Organics by Method 8270

•

× .

×,

•

.

.

CAS#	Compound	Concentration (ug/Kg)		
	~ ~ ~ * * * * *	በ በ በ	ŤŤ	
100-75-4	N-Nitrosopipciidine		1 1	
78-59-1	Isophorone	8,000 8,000	U TT	
88-75-5	Z-Nitrophanol	8,000		
105-67-9	Z,4-Dimethylphcnol	8,000		
108-70-3	1,3,5-Trichlorobenzene	8,000	U TT	
98-87-3	Benzal chloride	8,000	U	
65-85-0	Benzoic acid	990] 	
111-91-1	bis (2-Chloroethoxy) methane	8,000	U	
120-83-2	2,4-Dichlorophenol	8,000	U	
120-82-1	1,2,4-Trichlorobenzene	8,000	U	
91-20-3	Napthalene	8,000	U	
106-47-8	4-Chloroanilinc	8,000	U	
87-65-0	2,6-Dichlorophenol	16,000	U	
95-54-5	o-Phenylenediamine	8,000	U	
122-09-8	dimethylphcnylethylamine	8,000	U	
1888-71-7	Hexachloropropene	8,000	U	
87-68-3	Herachlorobutadiene	8,000	U	
87-61-6	1.2.3-Trichlorobenzene	8,000	U	
98-07-7	Benzotrichloride	16,000	U	
924-16-3	N-Nitroso-di-n-butylamine	8,000	U	
59-50-7	4-Chloro-3-methylphenol	8,000	U	
106-50-3	P-Phenylencdiamine	8,000	U	
94-59-7	Safrole	8,000	U	
106-50-3	m-Phenylenediamine	8,000	U	
91-57-6	2-Methylnanhthalcne	8,000	U	
90-12-0	1-Methylnanhthalene	8,000	U	
95-94-3	1245-Tetrachlomhenzetté	8.000	U	
634-90-7	1235-Tetrachlombenzene	8.000	U	
77_47_4	Hexachlomevelopentadiene	8,000	ប	
88-06-2	2.4.6-Trichlorophenol	16,000	U	
95-95-4	2.4.5-Trichlorophenol	16,000	U	
120-58-1	Isosafrole	16,000	U	
91-58-1	2-Chloronaphthalene	8,000	U	
90-13-1	1-Chloronaphthalcnc	8,000	U	
	—			

1-025 6'002/018 E-024

-

_mold _ mels:01 0005-85-mm4

•

Page 3 Product: FTH-100

· •

•

٠

• :

. •

Semi-Volatile Organics by Method 8270

· 🔺

.

6

κ.

•

ι,

Ň

. •

7

<u>C.A.S</u> #	Compound	Concentration (ug/Kg)		
634-66-2	1.2.3.4-Tetrachlorobenzene	8,000	ប	
88-74-4	2-Nitroaniline	8,000	U	
130-15-4	1.4-Naphthoquinone	16,000	U	
100-25-4	1,4-Dinitrobenzene	16,000	U	
131-11-3	Dimethyl Phthalate	8,000	U	
208-96-8	Acenaphthylene	8,000	U	
99-09-2	3-Nitroaniline	16,000	U	
83-32-9	Acenaphthene	8,000	U	
51-28-5	2,4-Dinimophenul	32,000	U	
100-02-7	4-Nitrophenol	8,000	U	
132-64-9	Dibenzofuran	8,000	U	
121-14-2	2,4-Dinitrotolucus	8,000	U	
608-93-5	Pentachlorobenzene	8,000	U	
134-32-7	2-Naphthylamine	16,000	U	
606-20-2	2,6-Dinitrotolucne	8,000	U	
134-32-7	1-Naphthylamine	16,000	U	
58-90-2	2,3,4,5-Tetrachlorophenol	16,000	U	
84-66-2	Diethylphthalate	8,000	U	
297-97-2	Zinophos	8,000	U	
7005-72-3	4-Chlorophenyl-phenylether	8,000	U	
86-73-7	Fluorene	8,000	U	
100-01-6	4-Nitroanilinc	16,000	U	
99-55-8	5-Nitro-o-toluidine	16,000	U	
534-52-1	4,6-Dinitro-2-methylphenol	24,000	U	
86-30-6	N-Nitrosodiphenylamine (1)	8,000	U	
122-39-4	Diphenylamine	8,000	U	
99-35-4	1,3,5-Trinitrobenzene	16,000	U	
122-66-7	1,2-Diphenylhydrazine	8,000	U	

- 1-D2X L'DDPLDIA L

•*

Page 4

• .

.

Product: FTH-100

Semi-Volatile Organics by Method 8270

-

- -

÷.

1

- U- Indicates compound was analyzed but not detected. The sample quantitation limit must be corrected for dilution and for percent moisture.
- J- Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the mass spectral data indicated the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- B- This flag is used when the analyte is found in the associated blank us well as in the sample. It indicates possible/probable blank contamination and warns the data user to take appropriate action.
- E- This flag identifies compounds whose concentrations exceed the calibration range of the GC-MS instrument for the specific analysis.

-

P40-4 B10/20014 ZS0-1

Technical Data Sheet

Product: FTH-100

TCLP Metals

•

•

.

· · ·

Metals	Result	Limits	EPA Method	
Arsenic	0.046	5.0	208.2	
Barium	<0.50	100	208.1	
Cadmium	<0.005	1.0	213.2	
Chromium	<0.05	5.0	218.1	
Lead	<0.05	5.0	239.1	
Mercury	<0.001	0.2	245.1	
Selenium	0.01	1.0	270.2	
Silver	<0.005	5.0	272.1	

•

•

•

۰ ۰

1

۰.

Ň

-

All data reported in ppm

: .

A80-9 210/800.9 220-T

-moid = meazint 0002-92-mny

۰.

•

Technical Data Sheet

- -

ς.

.

•

•

•

· .

Calorific Content by ASTM D-240

•

•

<u>Test</u> Result

Calorific Content 8,826 BTU/Ib

Reported on an as is basis

•

1-025 6:008/018 E-064

~

-mail _ ms82:01 0002-92-84

•

. . .

•

•

Page 1 of 6

Product Name: FTH-100

Preparation date: 8/16/00

MSDS REVISION #: 001

PRODUCT NAME:	FTH-100
	• -

SYNONYMS:

• • •

•

.

None

DISTRIBUTED BY:

Accretion Technologies 300 Business Center Drive, Suite 302 Pittsburgh, PA 15205

PHONE NUMBER: (304) 552-2919

SECTION 2 - COMPOSITION/INFORMATION ON INGREDIENTS

Component

<u>%</u> CAS No. Exposure Limits

Organic resins

30-60 Proprietary N

Not established

Surfactant blend	1-10	Proprietary	Not established
Guar gum	1-10	9000-30-0	Not established
Fatty alcohol/fatty acid	1-10	Proprietary	Not established
Water	30-60	7732-18-6	Not established

SECTION 3 - HAZARDS IDENTIFICATION

Product is a brown liquid with a slight, bland odor. The product may cause eye irritation. Avoid contact with skin, eyes and clothing. Wear protective goggles and gloves when handling this product. Wash thoroughly after handling.

POTENTIAL HEALTH EFFECTS

EYES: Can cause initation.

Section 3 continued on next page

790-1 810/01014 ZS0-1

-mail - ms82:01 0002-85-24

۰.

Product Name: FTH-100

Page 2 of 6

Preparation date: 8/16/00

- HAZARDS IDENTIFICATION (continued) SECTION

SKIN:

Prolonged or repeated contact may slight irritation. Persons with pre-existing skin conditions are particularly susceptible.

INGESTION (swallowing):

May cause imitation of the mouth and throat, nausea, vomiting and diarrhea.

INHALATION (breathing):

Spray or mist may cause imitation to the nose, throat and lungs. Persons with pre-existing lung disorders are particularly susceptible.

CHRONIC EFFECTS/CARCINOGENICITY:

This product (or component) is not listed in IARC Monographs, the NTP Seventh Annual Report or the ACGIH TLVs as a carcinogen or potential carcinogen. OSHA does not regulate it as a carcinogen.

SECTION 4 - FIRST AID MEASURES

EYE CONTACT:

Flush with large amounts of water for at least 15 minutes, lifting upper and lower lids occasionally. Get medical attention.

SKIN CONTACT:

Wash exposed area with soap and water. Launder contaminated clothing before reuse.

INGESTION (swallowing):

Immediately drink two large glasses of water. Call a physician. Do NOT induce vomiting unless instructed to do so by physician. Never give anything by mouth to an unconscious person.

INHALATION (breathing): If affected, move to fresh air.

230-1 R10/110'a 1-025

-HOIT MEBS:01 0002-92-24

•

Product Name: FTH-100

• •

•

Page 3 of 6

Preparation date: 8/16/00

SECTION 5 - FIRE FIGHTING MEASURES

FLASH POINT: ~500° F (100° C)

FLASH POINT METHOD: PMCC

UPPER EXPLOSION LIMIT: Una LOWER EXPLOSION LIMIT: Una AUTOIGNITION TEMPERATURE: Una SENSITIVITY/SPARKS: Unk SENSITIVITY/STATIC ELECTRICITY: Unk

Unavailable Unavailable Unavailable Unknown Unknown

EXTINGUISHING MEDIA:

Dry chemical, water fog, and regular foam

FIRE AND EXPLOSION HAZARDS:

None known. Product contains a large amount of water, and would not normally burn.

FIRE-FIGHTING EQUIPMENT:

Keep personnel removed from and upwind. Wear full protective clothing and self-contained breathing apparatus with full face-piece.

SECTION 6 - ACCIDENTAL RELEASE MEASURES

Persons not wearing protective equipment should be excluded from the area of the spill until clean up has been completed. Dike area of spill to prevent spreading and pump liquid to salvage tank. Absorb remaining liquid on vermiculite, floor absorbent or other absorbent material and shovel into containers.

HANDLING:

Avoid contact with skin, eyes and clothing. Wash thoroughly after handling.

STORAGE: Keep in closed or covered containers when not in use. Store in cool dry place with adequate ventilation.

733-4 610/210'4 250-1 _

-mail- msiz:01 0002-92-204

Product Name: FTH-100

115

Page 4 of 6

Preparation date: 8/16/00

SECTION 8 - EXPOSURE CONTROLS/PERSONAL PROTECTION

RESPIRATORY PROTECTION: Not required under normal conditions.

SKIN PROTECTION: Wear protective gloves such as Neoprene or Buna-N.

EYE PROTECTION:

Chemical splash goggles in compliance with OSHA regulations are advised.

OTHER PROTECTION:

Normal work clothing covering arms and legs are recommended.

Unavailable

Unavailable

5-7

ENGINEERING CONTROLS:

Provide sufficient ventilation to maintain exposure below level of overexposure.

SECTION 9 - PHYSICAL AND CHEMICAL PROPERTIES

APPEARANCE: ODOR: SPECIFIC GRAVITY: VAPOR PRESSURE (mm Hg): VAPOR DENSITY (Air = 1): INITIAL BOILING POINT: EVAPORATION RATE: (Ethyl Ether = 1) SOLUBILITY in WATER: VOLATILE %: pH: pH METHOD: Brown liquid @ 68° F (20° C) Slight bland >0.998 17.5 @ 68° F (20° C) Lighter than air 212° F (100° C) <1 Dispersible

1-025 6'013/018 E-0E4

Product Name: FTH-100

.

Page 5 of 8

Preparation date: 8/16/00

SECTION 10 - STABILITY AND REACTIVITY

STABILITY (conditions to avoid): Stable under normal conditions.

INCOMPATIBILITIES (materials to avoid): Avoid contact with strong oxidizing agents and strong mineral acids.

DECOMPOSITION: Not available.

HAZARDOUS POLYMERIZATION: Can not occur.

SECTION 12 - ECOLOGICAL INFORMATION

In an effort to demonstrate the safety of the product when used as a dust control agent, 82 grams of product were mixed with 1,890 grams of aggregate, typical of dirt roads. The mixture was allowed to dry, then mixed with water and allowed to stand. The water was then tested in aquatic toxicity studies, and found to be non-toxic to Daphnia magna.

SECTION 13 - DISPOSAL CONSIDERATIONS

Incineration is the recommended disposal method for all chemical wastes. Material collected on absorbent material may be deposited in a landfill in accordance with all applicable local, state and federal regulations.

This product, if disposed of, is not considered a hazardous waste under current RCRA definitions.

1-025 6'0/710'd 290-1

-mail _ messigi 0002-92-8my

Product Name: FTH-100

• • •

Page 6 of 6

Preparation date: 8/16/00

Not regulated under current DOT, IMO, or ICAO regulations.

SECTION 15 - REGULATORY INFORMATION

TSCA INFORMATION:

All components in this product are in compliance with TSCA Inventory requirements.

SARA 313 INFORMATION:

SARA requires submission of annual reports of release of toxic chemicals that appear in 40 CFR 372. This information must be included in all MSDS that are copied and distributed for this material.

Components present in this product at a level that could require reporting under the statute are: None

HAZARD RATING:

0 - LEAST 1 - SUGHT 2 - MODERATE 3 - HIGH 4 - EXTREME

HAZARD RATING METHOD: NFPA

REASON FOR REVISION: Updated flash point information (Section 5).

The product information contained herein is believed to be accurate as of the date of the Material Safety Data Sheet, and is provided without warranty, expressed or implied, as to the results of use of this Information or the product to which it relates. Recipient assumes all responsibility for the use of this information and the use (alone or in combination with any other product), storage or disposal of the product, Including any resultant personal injury or property damage.

****END OF REPORT****

F-024 1-025 b 012/018

-Wold _ me82:01 0002-32-#ny

Technical Data Sheet

. -

-

•

. -

Product: FTH-100

÷

-÷

Volatile Organics by Method 8240

CAS#	Compound	Concentration (ug/	<u>(g)</u>
74-87-3	Chloromethane	23	J
74-83-9	Bromomethane	26	U
75-01-4	Vinyl chloride	53	U
75-00-3	Chloroethane	53	U
75-09-2	Methylene chloride	1,700	B,E
67-64-1	Acctone	2,800	B,E
75-15-0	Carbon disulfide	22	J
75-35-4	1,1-Dichloroethane	26	U
75-34-3	1,1-Dichloroethane	26	U
540-59-0	1,2-Dichloroethane (total)	26	U
67-66-3	Chloroform	27	-
107-06-2	1,2-Dichloroethane	26	U.
78-93-3	2-Butanone	830	B
71-55-6	1,1,1-Trichloroethane	26	U
56-23-5	Carbon tetrachloride	26	U
108-05-4	Vinyl acetate	53	U
75-27-4	Bromodichloromethane	26	U
78-87-5	1,2-Dichloropropane	26	U
10061-01-5	cis-1,3-Dichloropropane	26	Ŭ
79-01-6	Trichloroethane	26	U
124-48-1	Dibromochloromethane	26	U
79-00-5	1,1,2-Trichloroethane	26	ប
71-43-2	Benzene	150	
10061-02-6	Trans-1,3-Dichloropropene	26	U
110-75-8	2-Chloroethylvinylether	53	U
75-25-2	Bromoform	53	U

.

.

•

108-10-1	4-Methyl-2-Pentanone	280	
591-78-6	2-Hexanone	79	U
127-18-4	Tetrachlorocthane	26	U
79-34-5	1,1,2,2-Tetrachloroethane	53	U

790-1 810/910.9 Z20-1

-mold _ menge:01 0002-92-#my

•

Product: FTH-100

•

•

•

Page 2

Volatile Organics by Method 8240

Concentration (walk a)

•

Ń

•••

7

Compound	Concentration [ug/	NET.
━━ _ 1	1 200	F
loiuene	1,JVV 47	ישג ד ד
Chlorobenzenc	20	U
Ethylbenzene	360	
Styrenc	63	
Total xylcnes	340	
Iodomethane	53	U
Acrolein	640	U
Acrylonitrile	26	Ũ
Trichlorofluoromethane	25	U
3-Chloropropene	79	U
1,1,2-Trichloro-1,2,2-triftuoromethan	e 53	U
1,1,1-Trichloro-2,2,2-trifluoromethan	c 53	U
Dibromomethane	53	U
Crotonaldehyde	530	U
1,2-Dibromoethane	26	U
1,1,1,2-Tetrachloroethane	26	U
cis-1,4-Dichloro-2-butene	79	U
1,2,3-Trichloropropane	79	U
trans-1,4-Dichloro-2-butene	79	U
Ethylmethacrylate	53	U
1,2-Dibromo-3-chloroptopane	53	U
	CompoundTolueneChlorobenzeneEthylbenzeneStyreneTotal xylenesIodomethaneAcroleinAcroleinAcroleinAcroleinAcrylonitrileTrichlorofluoromethane3-Chloropropene1,1,2-Trichloro-1,2,2-trifluoromethanDibromomethaneCrotonaldehyde1,2-Dibromoethane1,1,1,2-Tetrachloroethaneis-1,4-Dichloro-2-butene1,2,3-Trichloropropanetrans-1,4-Dichloro-2-buteneEthylmethacrylate1,2-Dibromo-3-chloroptopane	CompoundConcentration (ug/Toluene1,300Chlorobenzene26Ethylbenzene360Styrene63Total xylenes340Iodomethane53Acrolein640Acrylonitrile26Trichlorofluoromethane253-Chloropropene791,1,2-Trichloro-1,2,2-trifluoromethane530ibromomethane531,1,1-Trichloro-2,2,2-trifluoromethane53Crotonaldehyde5301,2-Dibromoethane261,1,2-Tetrachloroethane261,2,3-Trichloropropane791,2,3-Trichloropropane79trans-1,4-Dichloro-2-butene79Ethylmethacrylate531,2-Dibromo-3-chloropropane53

- U- Indicates compound was analyzed but not detected. The sample quantitation limit must be corrected for dilution and for percent moisture.
- J- Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the mass spectral data indicated the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- B- This flag is used when the analyte is found in the associated blank as well as in the sample. It indicates possible/probable blank contamination and warns the data user to take appropriate action.
- E. This flag identifies compounds whose concentrations exceed the calibration range of the GC-MS instrument for the specific analysis.

1-025 b'0//010 E-064

-

-moll ms05:01 0005-82-20A

• • •

•

A 11

L

·

٠

Technical Data Sheet

8

3

٠

*

Product: FTH-100

Extractable Organic Halldes in Soil by EPA 600/4-84-008

Reported on dry weight basis

•

T-DE2 P.D18/019 F-D64

-

Technical Data Sheet

Product: FTH-100

. . .

.

Polynuclear Aromatic Hydrocarbons by EPA Method 625/8270C

.

3

Compound	Concentration (ug/Kg)	<u>Fiag</u>
Acemanhtheric	<100,000	U
Acenanhthviene	<100,000	U
Anthracene	<100,000	U
Renzo (a) anthracene	<100,000	Ŭ
Benzo (a) monthe	<100,000	U
Benzo (h) fluoranthene	<100,000	U
Renzo (g.h.i) perviene	<100,000	び
Benzo (k) fluoranthene	<100,000	U
Chrysene	<100,000	U
Diberry (a h) anthracene	<100,000	U
Fluoranthene	<100,000	U
	<100,000	U
Indeno (173-cd) pyrene	<100,000	U
Nanhthalene	<100.000	U
	<100.000	U
	<100.000	U
x ya calle		

- U- Indicates compound was analyzed but not detected. The sample quantitation limit must be corrected for dilution and for percent moisture.
- J- Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the mass spectral data indicated the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- B- This flag is used when the analyte is found in the associated blank as well as in the sample. It indicates possible/probable blank contamination and warns the data user to take appropriate

action.

-

E- This flag identifies compounds whose concentrations exceed the calibration range of the GC-MS instrument for the specific analysis.

1-022 610/610 E-DEV

•

.

OCR

The following pages contain the Optical Character Recognition text of the preceding scanned images.

q4 P & A Engineers and Consultants, Inc. P.O. Box: 4 70 P.O. Box: 279 Alum Creek, W. Ta. 25003-0470 Louisa, kv. 41230 Photie (304) 756-4066 Phone (606) 673-4413 Far (304) 756-4068 (606) 673-4415 October 15, 2002 ED Mr. Dennis Treacy, Director Commonwealth of Virginia Department of Environmental Quality 5636 Southem Boulevard Virginia Beach, VA 23462 Re: Dominion Terminal Associates - Pier I I Facility AIRS ID 51-700-00074, Registration No. 60997 Air Quality Modification Application Dear Mr. Treacy: On behalf of our client, Dominion Terminal Associates, P & A Engineers and Con sultants, Inc. submit the attached modification application to the coal/coke storage and expo rt facility for your review and approval. The purpose of this modification application is to identify existing and propo sed NSPS equipment, as well as additional storage, associated with the production of a synfuel pro duct. The synfuel process consists of coal fines being treated with a binding agent that creates a chemical change and produces an altemate fuel source. As evidenced 'm the attached MSDS sheets, t he proposed binder for the svnfuel product is environtmentally friendly and contains no VOC's. Т Domim'on Temifimi Associates currently ma'mtains a highly efficient dust suppr ession systern and proposes no change to its opention or current permit requirements in regard to emission controls. If additional information or clarification is needed, please contact me at the Alum Creek address listed above or cafl 304-7564066. S' I

Donna J. T Air Quality Project Manager dtolereapandaengineers.com

z

TABLE OF CONTENTS

Section A Document Certirication Section B General Information Section C Processing, Manufacturing, Surface Coating and Degreasing Operations - Form 5 Section D Stack Parameters and Fuel Data - Form 1 1 Section E Air Pollution Control and Monitoring Equipment - Form 12 Section F Air Pollution Control - Supplemental Information - Form 13 Section G Criteria Pollutant Emissions - Form 14 Section H Toxic or Hazardous Emissions From Proposed Facility -Form 15 Section J Emission Calculations Section K Material Flow Diagram - Proposed Facility Section L Site Plan Section M Proposed Synfuel Binder COMMONWEALTH OF VIRGINIA Department of Environmental Quality

AIR PERMIT APPLICATION General information CHECK ALL FORMS THAT APPLY AND LIST ALL ATTACHED DOCUMENTS. CRITERIA POLLUTANT EMISSIONS, Page 14 MAP AND LOCALTTIES LIST (infa(mationi, Pages, ii-vt TOXIC OR HAP OR OTHER EMISS IONS, Page 15 CONFIDENTIAL INFORMATION, Page vii OPERATING PERIODS, Page 16 FORMULA-BASED HAZARDOUS AIR POLLUTANT INFORMATION, Page viii HAZARDOUS AIR POLLUTANT LIST linformation), Pages ix-x LIST ATTACHED DOCUMENTS REQUEST FOR LOCAL GOVERNMENT CERTIFICATION FORM, Pages xi-xii MAP f SITE LOCAT TON CONTENTS AND DOCUMENT CERTIFICATION, Page I FACILITY SITE PLAN GENERAL INFORMATION, Page 2 PROCESS FLOW DIAGRAM/SCHEMATIC GENERAL INFORMATION (continued), Page 3 MSDS or CPDS SHEETS FUEL-BURNING EQUIPMENT, Page 4 ESTIMATED EMISSIONS CALCULATIONS PROCESSING, Page 5 STACK TESTS INKS, COATINGS, STAINS, AND ADHESIVES, Page 6 AIR MODEL DATA INCINERATORS, Page 7 LOCAL GOVERNING BODY CERTIFICATION FORM VOLATILE ORGANIC COMPOUND/PETROLEUM STORAGE TANKS, Page 8 VOLATILE ORGANIC COMPOUNDIPETROLEUM STORAGE TANKS -CONTINUED, Page 9 LOADING RACKS AND OIL-WATER SEPARATORS, Page 10 STACK PAFtAMETEFtS AND FUEL DATA, Page 1 1 AJR POLLUTION CONTROL AND MONITORING EQUIPMENT, PAGE 12 AIR POLLUTION CONTROLISUPPLEMENTAL INFORMATION, PAGE 13 Note added form sheets above; also indicate the number of copies of each form in blank provided. DOCUMENT CERTIFICATION FORM (see other side for instructions) corW under penafty of law that this document and all attachments [as noted abo ve] were prepared under my direction or supervision in accordance with a system designed to assure that q ualiried personnel propefly gather and ovaluate the informaWon submitted. Based on my inquiry of tho person or perso ns who manage the system, or those persons directfy ivsponsible for gathadng and evaluaiffng the informatFon, the inforinadon submitted is, to the best of my knowledge and belief, true, accurate, and complets. / am aware that there are significant ponaldes for submftdng false

informadon, including the possibirity of flne and impdsonment for knowing viol agons.

SIGNATURE: DATE:

NAME: e9*1 ig; @11-41L

TITLE: Ilez"1131"Ir REGISTRATION

COMPANY: Dominion Terminal Associates NUMBER: 60997 References: Virginia Regulations, 9 VAC 5-80-IO.D.4. See reverse of this form for instructions. EL) @RE

COMMONWEALTH OF VIRGINIA DEP, IENT OF ENVIRONMENTAL QUALITY AIR PERMIT APPLICA TION GENER4L INFORMA TION

PERSON COMPLETING FORM DATE REGISTRATION NUMBER

Donna J. Toler, Air Quality Project Manager, P & A Engineers and 10-15-02 6099 7 Consuttants, Inc.

REASON(S) FOR SUBMISSION:

OPERATING PERMIT

RENEWAL OF OPERATING PEE04IT (CURRENT PEP24IT EXPIRATION DATE:

MDIFICATION THIS PERKIT IS APPLIED FOR PURSUANT TO THE FOLLOWING PROVISION(S) OF THE VIRGINIA REGULATIONS OR FEDERAL REGULATIONS (IF KNOWN): NEW SOURCE 9 VAC 5-80-10 (NEW AND MOD. SOURCES) 9 VAC 5 Chapter 80, Article 8 (PSD, MAJOR SOURCES) 9 VAC 5 Chapter 80, Article 9 (NON-ATTAINMENT MAJOR SOURCES) EXEMPTION 9 VAC 5 Chapter 80, Article 5 (STATE OPERATING PERMITS)

REGISTRATION UPDATE

OWNERSHIP OR NAME CHANGE - EFFECTIVE DATE: (COMPLETE PAGES 1 AND 2 ONLY)

OTHER (SPECIFY)

Would you be interested in a DEQ Pollution Prevention 11132) site visit to dis cuss the potential benefits of implerrienting P2 prac 6r facility? Please note that there is no charge for this service and that the site visit i s not limited to air pollution issues. Site visits can yield air/water PoDuti on or waste minimization recommendations that can benefit your facility. The pur pose of these visits is not to assess compliance with applicable regulatory requirements.

= Yes No

If yes, would you prefer the P2 site visit to occur:

Before permit issuance After permit issuance

COMPANY AND DIVISION NAME: Dominion Terminal Associates

MAILING ADDRESS: PO Box 967A, Newport News, VA 23607

TELEPHONE NUMBER: NUMBER OF EMPOLYEES AT SITE: PROPERTY AREA AT SITE: 757-245-2275

EXACT SOURCE LOCATION - INLCUDE NAME OF CITY (COUNTY) AND FULL STREET ADDRESS OR DIRECTIONS: Pier 1 1, Harbor Road, Newport News, VA 23607

PERSON TO CONTACT ON AIR POLLUTION MATTERS - NAME AND TITLE: PHONE NUMBER: 757-245-2275 ext. 307 DERRIS BFtADSHAW, PE FAX NUMBER: Plant Engineer 757-247-9729

FWP[ease check here if you obtained this form from the DEQ website.

FOR OFFICIAL USE ONLY COUNTY CODE: PLANT ID NUMBER: NUMBERS: COMMONWEALTH OF VIRGINIA DEPARTMENT OF ENVIRONMENTAL QUALITY AIR PERMIT APPLICA TION GENERAL INFORMA TION (contfnued)

COMPANY NAME DATE REGISTRATION NUMBER

Dominion Terminal Associates 10-15-02 60997

IS THE FACILITY TO BE PERMITTED AS A PORTABLE PLANT?YES -NOE

DESCRIBE THE PRODUCTS MANUFACTURED AND/OR SERVICES PERFORMED AT THIS FACILITY:

Coal and coke handling, storage, and barge loading facility modified to includ e a synfuel processing plant with storage and loadout of the alternative fuel source.

PRIMARY SIC SECONDARY SiCs

PLEASE LIST ALL THE FACILITIES IN VIRGINIA UNDER COMMON OWNERSHIP OR CONTROL B Y THE OWNER OF THIS FACILITY:

MILESTONES. This section is to be completed if the permit application include s a new emissions unit or modification to existing operations.

MILESTONES* STARTING DATE ESTIMATED COMPLETION DATE

New equipment installation Upon Permit Approval Approx. 90 days thereafter

Modification of existing process or equipment

Start-up dates January 1, 2003

For new or modified installations to be constructed in phased schedule, give c onstruction/installation starting and completion date for each phase.

7@ Page Revised April 15, 2002 Page 2 Instructions FORM 7 Dominion Terminal Associates Avoids Demurrage, Reduces

Inventory Levels and Adheres to Government Regulations

Using MRO Software's Strategic Asset Management Solution

Storing and siI pp ng up to 'IO rr I ion tons 3f coal per year is no sma,l feat, especial y in light of stringent envIronmental 3nd safety re. u!ations and the need for . g efficient and precise managenient of many d fferent

types of coal. Dominion Terminal Associates (DTA) s a coal shipp:ng and ground storage facil ty located on the Umted States' eastern seaboard at Newport News, Virg nia. Stretch,ng over 100 acres, DTA recelves coal by rail, stores t and then sends it cut by ship or coastal

barge to ts appropriate 91-obal clest nation. Whoilv owned by coal-producing and sales compames, DTA Opefates 24-hoirs-per-day, 7-days-per-week.

On arv qi@.en day at DTA, CSX Transportat, on del vers trains from eastern coa@ mines, br nqing many types of Tc, meet these maintena nce, operationa) and safety demands, DTA requird a wor!,4-claSs

coal for storage and/or shipping. Once received at DTA, asset management solu tion. DTA found MRO Software's MA@<IMO(` to be the most -.osz-

Up to 1 7 nn:l@,on tcns of coal can be stored at a time, and effective, user-f riendly and compal e solut ori avai abi e to meet ts needs. DTA planned to

segregated In storage areas by coal type and sh pper. create an integrated sys tem that housed a I ma,nTenance, repa r and operat ons (MRO) infor-

DTA coml efficient, high-speed coal hard ing w,th mation in one place. In addition, DTA needed to mainta,n safety and pert .ormance, reduce

soph sticated sampi nq and blending systems. These inventory and labor costs a nd improve the overall eff;.-iencv of the terminal. DTA hos used

capab; litiel-, coupled with an irrpervious surface of MAXIMO since 1996 to add ress these needs.

stcrage areas, a system of runoff d tches, chemic31;y "DTA p aces maior emphas is on reliability, efficiency and safety," conimented Dan baianced hold.ng ponds and a romputer,zed water Waqoner, Maintenance Super nte ndent for DTA. "NIAXIMO plays a very s 9n,f cant spray dist suppression system in The storage area, make role in our achieving those objectivcs."

DTA an environmentally responsible, state-of-the-art

fac hty. Aft,-r DTA handles, segregates and stores the "MAXIMO helpsustrackand ma,ntain almost5,000pieces of equipment-allof,,Vh@charee.3sen-

cca , 3eaclo nci and -oasTal bar:ies and co I ers t,-31 to our daily operation s," said Zach Hcward, MAYIMO Administrator fcr DTA. "At our terrii-

it to ts Fina destinations. nal, @vhenevenonepieceofequiprnentgoesdcwn, itputs a burdenonourwholeoperat,on. The

MAXIMO preventive maintenance (PM) functional,ty has optimized our equipment p erformance Resultitig in The on-time del,very of quality, uncontam;- and helped streamlin e cperat,ons."

n-@l coa@ croducts, DTAs daily rcund-the-cicck effxt

necess tates -v-, rker eff c @ncy, hand rg prec, sion and

well-manacied, properly funct cn,ng equ pment A Goals: Results:

tandem rotary car duniper, three stacker/reclainiers, Reduce inventory levels -o- Equipment history in MAXIMO allowed DTA to

n neleen belt conveyors with over four miles of be;tina, predic-t needed parts and immediately reduce

inventory levels by approximately five percent meta detectors, mechan ca samp ers and rragnetic

S@carator@ are @-n;y @j fe,.v -jf zh@-. riiany p eces c-f equ,p- Meet governme nt DTA leverages M"MO and easily adheres to

rrerit that must be op@rat ng cpr,mally zo ensure that regulations the latest environmental regulations

DTA me@ts t3 :@oals In a,@dqion, LTA irList adliere rr,-@ Effectively allocate MAXIMO's visibility into DTA!s labor require-

a r and water regulauc, is n, FDse,: 1 ov t1he state and labor resources ments al lows them to accurately forecast

f-de,a j,-I-r : e,. labor, and ensure that resources are available

to complete mission critical jobs

Ore of DTAs primary goals in implementing MAXIMO was to opti- as the superviso r ciuickly identifies and orders the correct part w,thout

mize equipment performance through consistent monitcring and having to type in the information," commented Wagoner. "The equip-

maintenance. Inefficient rra ntenance of the equ pment that handles ment histor y in MAXIMO also allows us to predict how much Inventory

tHe coal can delay or stcp sh:pp,ng, resulting n cost y downtime. Lve are goin g to need, which saves us money as we were able to reduce

Using MAXIMO to generate PM reports at scheduied intervals, DTA our inventory levels by approximately five percent."

effect ve y mor tors the performance of its equipment and ensures MAXIMO also helps DTA's Controller monitor the Company's expenthat repairs are rnade n a strateg c manner. For example, DTA regu- d,tures. A t any given time, she can access a report that outlines the larly checks the components of all of its conveyor drives. if a drive material s issued in and out of inventory and the generai ledger (GL) fai s, then ocerations would essentially shut down while the reQairs a,-count code charged. These real t me numbers help management viere being made. The damage would result in significant downt me keep their f ingers on the pulse of the organization's spending patand hefty repair costs. DIA avoids emergency repairs by regularly terns, ensuring that the departments do not exceed the budget. conducting PM routines to check the drives. This ounce of preven-

tion ailows DTA to realize s gnificant savings as they reduce equip- MAXIMO's labor functionality helps DTA organi--e labor Into five areas

ment downtime and improve the overall operation of the terminal. of expertise, stream@ine thework assignment process and monitor the

effect, veness of how they allocate the abor resources. The MAXIMO Every month, DTA also runs a MAXIMO report that outlines the num- data enables DTA to identify trends based on an analysis of the type ber of er-nergency work orders for each piece of equipment. W th of work being done and hours spent dcing each activity. these reports DTA identifies and replace5 the equipment that is caus-

ng the rgreatest amoint of doNntime, resulting in Increased ptime. "This visib iiity into our labor requirements a@lows us to more accu-

rately forecast labor to rnake sure that people are available to com-"Downtime In oLir viorld also makes the [hreat of dFmurrage, a fe? D'ere Miss on critical jobs," added Wagoner. "Operating time is that we pay f we co not dump cars and load vesseis in a t,meiy rllanwhere we make our money, and MAXIMO helps us make sure that ner, a reality. Demurrage fees can quickly run into very h,gh costs, Vp have e nough people available to corrplete this job." explained Wagoner. "MAXIIVIC, heips us avoid unnecessary do@vn-

time anc! eliminate rJemurraqe fees." In 3dclition, MAXIMO enabled DTA to rernain in compliance with

the latest government-imposed environmental requirements. With DTA a:so ised MAXIMO to streamline @ts inventory track-mg system. so much coal being handled, DTA is responsible for rraking sure the Using MAXIMO, DTA mWirriZed labor time and costs associated env,rcnment is not subject to harmful contamination. MAXIMO genwith fincfing and order ng parts. For examp e, a materials control erates preventive maintenance work orders for regular water and air superviscDr can access MAXIMO's iriventory module to search for testing, and e nsures that the appropriate controls are properly and reorder spec,f,c p eces of equipment. MAXIMO chpcks the working. Work orde rs that require immediate attention due to availability of the needed rraterials from internal sources first, and safety concerns receive the highest pnority in the MAXIMO system. then if the part is not in stc)(--k the supervisor can automatically cre-

ate a purchase requisition without typing the part in the system. streamiined the operat,ons of DTA.'s entire terminal.

Because we run on a 24 x 7 scheduie, MAXIMO is crtical to ensur-"MAXIMO not only saves us money as it makes sure that we do not ing that all o f our parts, equipment ancf Jabor are working at the order a part tha-, @Ne a ready have n stock, but it also saves us labor time h ghest optinniZation," continued Wagoner. "With MAXINIC), we

now use cur tviRO nformation strategicaJly to improve business

efficienc es, save money and maintain the h ghest environmental

ancf safety standards."

CC) m ro

SOFTWARE

Corporate Headquarters Asia Australia and New Zealand Europe, Middle East, Africa Latin America

ID MRO Software, Inc. MRO Software Hong Kong Ltd. NIRO Soft%, vare Austral, a Pt y. (EMEA) MRO Software, Inc.

1(0 C,osby Dr@ve ph -852-2166-8760 Lirr,t@d MRO Software ph 305-267-8820

Bedford, MA 0 1 7 30 fax -852-2166-8555 ph 61-2-9463-7734 ph -44-1-483-727000 fax 305-264-8853 0 ph 800-'%1,1-3346 fa, -61 2-9957-2669 fax 44-1-483-727079

fa, 770-481-3071

www.mroxom ,Ft _Yx_)2 MRC roll-,. -3H! MR,:,

PROCESSING, MANUFACTURING, SURFACE COATING AND DEGREASING OPERATIONS: 2 REGISTRATION NUMBER 60997 COMPANY NAME Dominion Terminal Associates DATE 10-15-0 _F m MAXIMUM EXPECTED FEED INPUT** Ω D MAXIMUM EXPECTED FEED OUTPUT" c MAXIMUM UNIT PROCESS OR OPERATION NAME* 0 EQUIPMENT MANUFACTURER AND RATED REF. (PROVIDE MANUFACTURE OR D MODEL NUMBER, IF KNOWN; CAPACITY NO. CONSTRUCTION DATE) E OTHERWISE, TYPE OF EQUIPMENT -/HR** /HR /DAY NEAR CR-1 Crusher 4 Fully-enclosed double-roll crusher 1000 700 16,800 6,132,000 CR-2 Crusher 4 Fully-enclosed double-roll crusher 1000 1 700 16,800 6,132,000 SS-1 Screen 4 Fully-enclosed double deck screen 700 700 16,800 6,132,000 SS-2 Screen 4 Fully-enclosed single deck screen 700 700 16,800 6,132,000 SS-3 Screen 4 Fully-enclosed double deck screen 700 700 16,800 6,132,000 SS-4 Screen 4 Fully-enclosed single deck screen 700 700 16,800 6,132,000

Include flow diagram (process schematic) relating process steps and a narrativ e description including feed materials, product materials, reaction intermedia tes and by-products; attach appropriate MSDS or CPDS for raw materials used or consumed and products manufactured or h andled. For modification codes see next page.

** Specify units for each operation in Tons, Pounds, Gallons, etc., as applica ble. Maximum Expected Feed Input for state operating permits shall be based o n historical high or attach justification.

PROCESSING, MANUFACTURING, SURFACE COATING AND DEGREASING OPERATIONS- -FREGIST RATION NUMBER COMPANY NAME Dominion Terminal Associates DATE 10-15-02 60997 m MAXIMUM EXPECTED FEED INPUT** Ω D MAXIMUM EXPECTED FEED OUTPUT" c AfAXIMUM UNIT PROCESS OR OPERATION NAME* 0 EQUIPMENT MANUFACTURER AND STOR40E Maximum REF@ (PROVIDE MANUFACTURE OR D MODEL NUMBER, IF KNOWN; CAPACITY Thfuput NO. CONSTRUCTION DATE) E OTHERWISE, TYPE OF EQUIPMENT /HR** /HR /DAY IYEAR OS-1 Open Stockpile #1 0 Material Storage 350,000 tons 24,000,000 OS-2 Open Stockpile #2 0 Material Storage 350,000 tons 24,000,000 OS-3 Open Stockpile #3 0 Material Storage 350,000 tons 24,000,000 OS-4 Open Stockpile #4 0 Material Storage 350,000 tons 24,000,000 OS-5 Open Stockpile #5 4 Material Storage 40,000 tons 12,264, 000 OS-6 Open Stockpile #5 4 Material Storage 50 tons 2,000 OS-7 Open Stockpile #7 4 Material Storage 20,000 tons 12,264,000 Include flow diagram (process schematic) relating process steps and a narrativ e description including feed materials, product materials, reaction intermedia tes and by-products; attach appropriate MSDS or CPDS for raw materials used or consumed and products manufactured or h andled. For modification codes see next page. ** Specify units for each operation in Tons, Pounds, Gallons, etc., as applica ble. Maximum Expected Feed Input for state operating permits shall be based o n historical high or attach justification.

PROCESSING, MANUFACTURING, SURFACE COATING AND DEGREASING OPERATIONS: COMPANY NAME Dominion Terminal Associates DATE 10-15-02 REGISTRATION NUMBER 60 997 m MAXIMUM EXPECTED FEED INPUT* Ω D MAXIMUM EXPECTED FEED OUTPUT" c AfAXI&fUAI UNIT PROCESS OR OPERATION NAME* 0 EQUIPMENT MANUFACTURER AND STORAGE REF. (PROVIDE MANUFACTURE OR D MODEL NUMBER, IF KNOWN: CAPACITY NO. CONSTRUCTION DATE) E OTHERWISE, TYPE OF EQUIPMENT -/HR** fHR /DAY NEAR BS-1 Storage Silo #1 0 Fully-enclosed wibaghouse 1,000 tons 2,740 65,753 24,000,000 BS-2 Storage Silo #2 0 Fully-enclosed wibaghouse 3,800 tons 2,740 65,753 24,000,000 BS-3 Stoarge Silo #3 0 Fully-enclosed wlbaghouse 4,11 00 tons 2,740 65,753 24,000,000 BS-4 Plant #1 4 Fully-enclosed with water/chemical 50 tons Food Bin solution 700 16,800 6,132,000 SS-5 Plant #1 4 Fully-enclosed in building 5 tons Pugmill Bin 700 16,800 6,132,000 BS-6 Plant #2 4 Fully-enclosed in building 5 tons Pugmill Food Bin 700 16,800 6,132,000 SS-7 Plant #2 Fully-enclosed with water/chemical Feed Bin 4 solution 50 tons 700 16,800 6,132,000 BS-8 Plant #2 Pugmill Bin 4 Fully-enclosed in building 5 tons 700 16,800 6,132,000 BS-9 Plant #2 Pugmill Feed Bin 4 Fully-enclosed in building 5 tons 6,132,000 700 16,800 Page Revised April 15, 2002 5 FORM 7

PROCESSING, MANUFACTURING, SURFACE COATING AND DEGREASING OPERATIONS: COMPANY NAME Dominion Terminal Associates DATE10-15-02 REGISTRATION NUMBER 609 97 m MAXIMUM EXPECTED FEED INPUT" Ω D MAXIMUM EXPECTED FEED OUTPUT" c MAXIMUM UNIT PROCESS OR OPERATION NAME* 0 EQUIPMENT MANUFACTURER AND RATED REF. IPROVIDE MANUFACTURE OR D MODEL NUMBER, IF KNOWN; CAPACITY NO. CONSTRUCTION DATE) E OTHERWISE, TYPE OF EQUIPMENT /HR** IHR /DAY NEAR BC-1 Rotary Dump Discharge Belt 0 Fully-enclosed belt conveyor 6800 2,740 65,753 24,000,000 BC-2 Silo #1 Feed Belt 0 Fully-enclosed belt conveyor 6800 2,740 65,753 24,000,000 BC-3 Silo #1 Discharge Belt 0 Fully-enclosed belt conveyor 6800 2,740 65,753 24,000,000 BC-4 Stockpile Feed Belt 0 Belt conveyor(yard) 6800 1 1 2,740 65,753 24,000,000 BC-5 CC/Coke Transfer Belt 0 Fully-enclosed belt conveyor 6800 2,740 65,753 24,000,000 BC-6 CC/Coke Transfer Belt 0 Fully-enclosed belt conveyor 6800 2,740 65,753 24,000,000 2,740 BC-7 Stockpile Feed Belt o Belt conveyor(yard) 6800 65,753 24,000,000 Include flow diagram (process schematic) relating process steps and a narrativ e description including feed materials, product materials, reaction intermedia tes and by-products; attach appropriate MSDS or CPDS for raw materials used or consumed and products manufactured or h andled. For modification codes see next page.

** Specify units for each operation in Tons, Pounds, Gallons, ate., as applica ble. Maximum Expected Feed Input for state operating permits shall be based o n historical high or attach justification.

PROCESSING, MANUFACTURING, SURFACE COATING AND DEGREASING OPERATIONS: COMPANY NAME Dominion Terminal Associates DATE10-15-02 REGISTRATION NUMBER 609 97 m MAXIMUM EXPECTED FEED INPLIT** 0 MAXIMUM EXPECTED FEED OLITPUT** D c MAXIMUM UNIT PROCESS OR OPERATION NAME* 0 EQUIPMENT MANUFACTURER AND RATED REF. IPROVIDE MANUFACTURE OR D MODEL NUMBER, IF KNOWN; CAPACITY NO. CONSTRUCTION DATE) E OTHERWISE, TYPE OF EQUIPMENT -/HR** /HR /DAY IYEAR BC-8 CC/Coke Transfer Belt 0 Fully-enclosed belt conveyor 6800 2,740 65,753 24 ,000,000 BC-9 CC/Coke Transfer Belt 0 Fully-enclosed belt conveyor 6800 2,740 65,753 24 ,000,000 BC-10 Loadout Bolt 0 Fully-enclosed belt conveyor 6800 2,740 65,753 24,000,000 BC-1 1 Silo Transfer Belt 0 Fully-enclosed belt conveyor 6800 2,740 65,753 24, 000,000 BC-1 2 Silo Transfer Belt 0 Fully-enclosed belt conveyor 6800 2,740 65,753 24, 000,000 BC-1 3 Stockpile Reversing Belt 0 Belt conveyor(yard) 6800 2,740 65,753 24,000 ,00

Include flow diagram (process schematic) relating process steps and a narrativ e description including feed materials, product materials, reaction intermedia tes and by-products; attach appropriate MSDS or CPDS for raw materials used or consumed and products manufactured or h andled. For modification codes see next page.

** Specify units for each operation in Tons, Pounds, Gallons, etc., as applica ble. Maximum Expected Feed Input for state operating permits shall be based o n historical high or attach justification.

PROCESSING, MANUFACTURING, SURFACE COATING AND DEGREASING OPERATIONS: COMPANY NAME Dominion Terminal Associates DATE 10-15-02 REGISTRATION NUMBER 60 997 m MAXIMUM EXPECTED FEED INPUT** Ω D MAXIMUM EXPECTED FEED OUTPUT" c MAXIMUM UNIT PROCESS OR OPERATION NAME* 0 EQUIPMENT MANUFACTURER AND RATED REF@ IPROVIDE MANUFACTURE OR D MODEL NUMBER, IF KNOWN; CAPACITY NO. CONSTRUCTION DATE) E OTHERWISE, TYPE OF EQUIPMENT -IHR** /HR /DAY rYSAR BC-14 Clean Coal Stockpile Feed 4 Fully-enclosed belt conveyor 6800 -Belt 6800 33,600 12,264,000 BC-15 Crusher Feed Belt 4 Fully-enclosed belt conveyor 1500 1400 33,600 12,264,000 BC-16 Screen Oversize Belt 4 Fully-enclosed belt conveyor 100 0.23 5.48 2,000 BC-17 Plant Feed Belt 4 Fully-enclosed belt conveyor 700 700 16,800 6,132,000 BC-18 Pugmill Bin Feed Belt 4 Fully-enclosed belt conveyor 700 700 16,800 6,132,000 BC-19 Pugmill Mixer Feed Belt 4 Fully-enclosed belt conveyor 700 700 16,8.00 6-,..132,000 BC-20 Pug Mixer Discharge Belt 4 Fully-enclosed belt conveyor 700 700-- 16,800 6,132,000 Include flow diagram (process schematic) relating process steps and a narrativ e description including feed materials, product materials, reaction intermedia tes and by-products; attach appropriate MSDS or CPDS for raw materials used or consumed and products manufactured or h For modification codes see next page. andled. Page Revised April 15, 2002 5 FORM 7

PROCESSING, MANUFACTURING, SURFACE COATING AND DEGREASING OPERATIONS: -TREGIST RATION NUMBER 60997 COMPANY NAME Dominion Terminal Associates DATE 10-15-02 m MAXIMUM EXPECTED FEED INPUT** Ω D MAXIMUM EXPECTED FEED OUTPUT" c MAXIMUM UNIT PROCESS OR OPERATION NAME* 0 EQUIPMENT MANUFACTURER AND RATED REF. (PROVIDE MANUFACTURE OR D MODEL NUMBER, IF KNOWN; CAPACITY NO. CONSTRUCTION DATE) E OTHERWISE, TYPE OF EQUIPMENT /HR** IHR /DAY NEAR BC-21 Spreader Belt 4 Fully-enclosed belt conveyor 700 700 16,800 6,132,000 BC-22 Briquatter Discharge Belt 4 Fully-enclosed belt conveyor 233 233 5,600 2,044,000 BC-23 Briquetter Discharge Belt 4 Fully-enclosed belt conveyor 233 233 5,600 2,044,000 BC-24 Briquetter Discharge Belt 4 Fully-enclosed belt conveyor 233 233 5,600 2,044,000 BC-25 Screen SS-2 Food Belt 4 Fully-enclosed belt conveyor 700 700 16,800 6,132,000 BC-26 Recirculating Belt 4 Fully-enclosed belt conveyor 100 0.23 5.48 2,000 BC-27 Screen SS-2 Discharge Belt 4 Fully-enclosed belt conveyor 700 700 ioo 6,132,000 Include flow diagram (process schernatic) relating process steps and a narrati ve description including feed materials, product materials, reaction intermedi ates and by-products; attach appropriata MSDS or CPDS for raw materials used or consumed and products manufactured or h andled. For modification codes see next page. 1* Specify units for each operation in Tons, Pounds, Gallons, etc., as applica ble. Maximum Expected Feed Input for state operating permits shall be based o n historical high or attach justification.

PROCESSING, MANUFACTURING, SURFACE COATING AND DEGREASING OPERATIONS: COMPANY NAME Dominion Terminal Associates DATE 10-15-02 -FREGISTRATION NUMBER 60997 m MAXIMUM EXPECTED FEED INPUT** Ω D MAXIMUM EXPECTED FEED OUTPUT" c MAXIMUM UNIT PROCESS OR OPERATION NAME* 0 EQUIPMENT MANUFACTURER AND RATED REF, (PROVIDE MANUFACTURE OR D MODEL NUMBER, IF KNOWN: CAPACITY NO. CONSTRUCTION DATE) E OTHERWISE, TYPE OF EQUIPMENT -/HR** /HR /DAY NEAR BC-28 Synfuel Stacking Belt 4 Fully-enclosed belt conveyor 700 700 16,800 6,132,000 BC-29 Screen SS-3 Oversize Belt 4 Fully-enclosed belt conveyor 100 .23 5.48 2,000 BC-30 Plant Feed Belt 4 Fully-enclosed belt conveyor 700 700 16,800 6,132,000 BC-31 Pugmill Bin Feed Belt 4 Fully-enclosed belt conveyor 700 700 16,800. 6,132,000 BC-32 Pugmill Mixer Feed Belt 4 Fully-enclosed belt conveyor 700 700 16,800 6,132,000 BC-33 Pug Mixer Discharge Belt 4 Fully-enclosed belt conveyor 700 700 16,800 6,132,000 BC-34 Spreader Belt 4 Fully-enclosed belt conveyor 700 16,800 6,132,000 Include flow diagram (process schematic) relating process steps and a narrativ e description including feed materials, product materials, reaction intermedia tes and by-products; attach appropriate MSDS or CPDS for raw materials used or consumed and products manufactured or h andled. For modification codes see next page. 1* Specify units for each operation in Tons, Pounds, Gallons, etc., as applica ble. Maximum Expected Feed Input for state operating permits shall be based o n historical high or attach justification.

PROCESSING, MANUFACTURING, SURFACE COATING AND DEGREASING OPERATIONS: -FREGIST RATION NUMBER 60997 COMPANY NAME Dominion Terminal Associates DATE 10-15-02 m MAXIMUM EXPECTED FEED INPUT** Ω D MAXIMUM EXPECTED FEED OUTPUT" c MAXIMUM UNIT PROCESS OR OPERATION NAME* 0 EQUIPMENT MANUFACTURER AND RATED REF. (PROVIDE MANUFACTURE OR D MODEL NUMBER, IF KNOWN; CAPACITY NO. CONSTRUCTION DATE) E OTHERWISE, TYPE OF EQUIPMENT -/HR** /HR /DAY NEAR BC-35 Briquetter Discharge Belt 4 Fully-enclosed belt conveyor 233 233 5,600 2,044,000 BC-36 Briquetter Discharge Belt 4 Fully-enclosed belt conveyor 233 233 5,600 2,044,000 BC-37 Briquetter Discharge Belt 4 Fully-enclosed belt conveyor 233 233 5,600 2,044,000 BC-38 Screen SS-4 Feed Belt 4 Fully-enclosed belt conveyor 700 700 16,800 6,132,000 BC-39 Recirculating Belt 4 Fully-enclosed belt conveyor 100 I 1 0.23 5.48 2,000 1 BC-40 Screen SS-4 Discharge Beit 4 Fully-enclosed belt conveyor 700 700 16,800 6,132,000 BC-41 Synfuel Stacking Belt 4 Fully-enclosed belt conveyor 700 800 6,132,000 Include flow diagram (process schematic) relating process steps and a narrativ e description including feed materials, product materials, reaction intermedia tes and by-products; attach appropriate MSDS or CPDS for raw materials used or consumed and products manufactured or h andled. For modification codes see next page.

** Specify units for each operation in Tons, Pounds, Gallons, etc., as applica ble. Maximum Expected Feed Input for state operating permits shall be based o n historical high or attach justification.

PROCESSING, MANUFACTURING, SURFACE COATING AND DEGREASING OPERATIONS: т COMPANY NAME Dominion Terminal Associates DATE 10-15-02 REGISTRATION NUMBER 60 997 m MAXIMUM EXPECTED FEED INPUT** Ω D MAXIMUM EXPECTED FEED OUTPUT" c MAXIMUM UNIT PFIOCESS OR OPERATION NAME& 0 ECIUIPMENT MANUFACTURER AND RATED REF. IPROVIDE MANUFACTURE OR 0 MODEL NUMBER, IF KNOWN; CAPACITY NO. J CONSTRUCTION DATEI E OTHERWISE, TYPE OF EQUIPMENT _1HR0* fHR /DAY [YEA R BC-42 Synfuel Product Transfer Belt 0 Fully-enclosed belt conveyor 1500 1,400 33,600 12,264,000 BC-43 CC/RC Transfer Belt 0 Fully-enclosed belt conveyor 6800 2,740 65,753 24,000,000 BC-44 CC/RC Transfer Belt 0 Fully-enclosed belt conveyor 6800 2,740 65,753 24,000,000 BC-45 CC/RC Transfer Belt 0 Fully-enclosed belt conveyor 6800 2,740 65,753 24,000,000 BC-46 CC/RC Transfer Belt 0 Fully-enclosed belt conveyor 6800 2,740 65,753 24,000,000 BC-47 CC/RC Transfer Belt 0 Fully-enclosed belt conveyor 6800 BC-48 2,740 65,753 24,000,000 CC/RC Transfer Belt 0 Fully-enclosed belt conveyor 6800 2,740 65,753 24,000,00 0 lncludeflowdiagram(processsehematio)relatingprocessstepsandanarrativedeseripti onincludingfeedmaterials, productmaterials, reactionintermadiates and by-products; attachappropriate MSDS or CPDS for raw materials used or consumed and products manufactured or h andled. For modification codes see next page. ** Specify units for each operation in Tons, Pounds, Gallons, etc,, as applica ble. Maximum Expected Feed Input for state operating permits shall be based o n historical high or attach justification.

STACK PARAMETERS AND FUEL DATA: Not Applicable --TDATE 10-15-02 COMPANY NAME Dominion Terminal Associates I REGISTRATION NUMBER 60997

VENT/STACK OR EXHAUST DATA FUELIS) DATA

MAX. MAX. MAX. VENT/ EXIT RATED EXPECTED EXPECTED HIGHER STACK VENT EXIT EXIT GAS GAS EXIT BURNED/ BURNED/ BURNED/ HEATING UNIT VENTI CONFIG. STACK DIA. VELOCITY VOLUME GAS HOUR DAY YEAR VALUE MAX. MAX. . REF. STACK (USE HEIGHT TEMP. TYPE OF (SPECIFY ISPECIFY (SPECIFY (SPECIFY % % No. NO. I CODE K) lfeet) lfeet) (fpm) facfm) JIF) FUEL UNITS) UNITS) UNITS) UNITS) UNITS) UNITS) UNITS) SULFUR ASH

Code K - Vent/Stack Configuration

Unobstructed vertical discharge
Obstructed vertical discharge (e.g., raineap)
Horizontal or downward discharge (e.g., T-stack)
Other (specify)

Page Revised July 31, 2001 11 FORM 7
AIR POLLUTION CONTROL AND MONITORING EQUIPMENT: COMPANY NAME Dominion Terminal Associates I @DATE@ 10-15-02TREGISTRATION NUMBE R 60997 m AIR POLLUTION CONTROL EQUIPMENT MONITORING INSTRUMENTATION Ω D % EFFICIENCY С O TYPE SPECIFY TYPE, MEASURED UNIT D VENT/ DEVICE IUSE POLLUTANT, AND RECORDER REF. E STACK REF. POLLUTANT/PARAMETER MANUFACTURER CODE USED NO. NO. (See Instructions) AND MODEL NUMBER LI DESIGN ACTUAL OS-1 0 Fugitive SW-Cs TSP/PM-10 Open Stockpile No. 1 099 99 99 Existing PM10 M onitor OS-2 0 Fugitive SW-Cs TSP/PM-10 Open Stockpile No. 2 099 99 99 Existing PM10 M onitor OS-3 0 Fugitive SW-Cs TSP/PM-10 Open Stockpile No. 3 099 99 99 Existing PM 1 0 Monitor OS-4 0 Fugitive SW-Cs TSP/PM-110 Open Stockpile No. 4 099 99 99 Existing PM 10 Monitor OS-5 4 Fugitive SW-Cs TSP/PM-10 Open Stockpile No. 5 099 99 99 Existing PM10 M onitor OS-6 4 Fugitive SW-Cs TSP-PM-10 qp@n Swclkpile No. IS 099 99 - 99 Existing PMI O Monitor -_0S-7 4 Fugitive SW-CS TSP/PM-10 Open tockpile No. 7 099 99- 99 Existing PM10 Monitor Code L - AIR POLLUTION CONTROL EQUIPMENT TYPE 1 .Settling Chamber 9. Electrostatic Precipitator 13.ABSORBER 2. Cyclone (a) hot side (a) packed tower 3. Multicyclone (bl cold side (b) spray tovver 4. Cyclone scrubber (c) high voltage (e) tray tower 5. Orifice scrubber (d) low voltage (d) venturi 6. Mechanical scrubber (a) single stage (e) other (specify) 7. Venturi scrubber (t) two stage 14. ADSORBER (a) fixed throat (g) other (specify) (a) activated carbon(b) variable throat 1 0. Filter (b) molecular sieve 8. Mist eliminator (a) baghouse (c) activated alumina (b) other (specify) (d) silica gel 1 1 . Catalytic Afterburner (a) other (specifyl 1 2. Direct Flame Afterburner 15. Condenser (specify) 99. Other Water sprays wlchomical solution, as needed Page Revised July 31, 2001 1 2 FORM 7

AIR POLLUTION CONTROL AND MONITORING EQUIPMENT: DATE 10-15-02T Fc oMPANY NAME Dominion Terminal Associates REGISTRATION NUMBER 60997 M AIR POLLUTION CONTROL EQUIPMENT MONITORING INSTRUMENTATION Ω D % EFFICIENCY С O TYPE SPECIFY TYPE, MEASURED UNIT D VENT/ DEVICE (USE POLLUTANT, AND RECORDER REF. E STACK REF. POLLUTANT/PARAMETER MANUFACTURER CODE USED NO. NO. (See instructional AND MODEL NUMBER Li DESIGN ACTUAL PMIO Monitor and acity Evaluation-CR-1 4 Source CS-FC TSP/PM-10 - OPACITY Double-Roll Crusher 099 99 99 Method 8 Existing PMIO Monitor and Visual 0 acity Evaluation-CR-2 4 Source CS-FC TSP/PM-10 - OPACITY Double Roll Crusher 099 99 99 Method 9 Existing PM IO Monitor and vi M:ual Ogacity Evaluation-SS-1 4 Source CS-FC TSPIPM-10 - OPACITY Double Deck Screen 099 99 thod Existing PM10 Monitor and Visual Opacity Evaluation-SS-2 4 Source CS-FC TSP/PM-10 - OPACITY Single Deck Screen 099 99 99 Method 9 PM10 Monitor and acity Evaluation-SS-3 4 --Source CS-FC TSP/PM-10 - OPACITY Double Deck Screen 099 99 99 Method B - --lExisting PM 1 0 Monitor and Visual Opacity Evaluation-SS-4 4 1 Source CS-FC @ TSP/PM-10 - OPACITY Single Deck Screen 099 99 99 Metho d 9 Code L - AIR POLLUTION CONTROL EQUIPMENT TYPE 1 .Settling Chamber 9. Electrostatic Precipitator 13. ABSORBER 2. Cyclone (a) hot side (a) packed tower 3. Multicyclone (W cold side (b) spray tower 4. Cyclone scrubber (e) high voltage (e) tray tower 5. Orifice scrubber (d) low voltage (d) venturi 6. Mechanical scrubber (e) single stage (e) other (specify) 7. Venturi scrubber (f) two stage 14. ADSORBER (a) fixed throat (g) other (specify) (a) activated carbon (b) variable throat 1 0. Filter (b) molecular sieve 8. Mist eliminator (a) baghouse (c) activated alumina (b) other (specify) id) silica gal 1 1 . Catalytic Afterburner (e) other (specify) 1 2. Direct Flame Afterburner 15. Condenser (specify) 99. Other -Full Enclosure wlchomical solution, as neade, *PartiaflV enc. discharge wlchomical solution, as neade

AIR POLLUTION CONTROL AND MONITORING EQUIPMENT: COMPANY NAME Dominion Terminal Associates __FDATE 10-15-02 REGISTRATION NUMBER 60997 M AIR POLLUTION CONTROL EQUIPMENT MONITORING INSTRUMENTATION Ω D % EFFICIENCY С 0 TYPE UNIT D VENT/ DEVICE (USE SPECIFY TYPE, MEASURED REF. E STACK REF. POLLUTANT/PARAMETER MANUFACTURER CODE POLLUTANT, AND RECORDE R USED NO. NO. iSse instructions) AND MODEL NUMBER L) DESIGN ACTUAL =010 Monitor and BS_ 1 0 Fugitive SW-FE TSP/PM-110 - OPACITY Storage Silo #1 99/1 Oa 100 100 Me thod S acity Evaluation-=010 Monitor and BS-2 0 Fugitive SW-FE TSP/PM-10 - OPACITY Storage Silo #2 99/1 Oa 100 100 Meth od S scity Evaluation-=010 Monitor and BS-3 0 Fugitive SW-FE TSP/PM-10 - OPACITY Storage Silo #3 99/10a 100 100 Metho d C acity Evaluation-Existing PM IO Monitor and Plant #1 Visual Opacity Evaluation-BS-4 4 Fugitive SW-FE TSP/PM-10 - OPACITY Feed Bin 99 99 99 Method 9 =0110 Monitor and Plant #1 acity Evaluation-BS-5 4 Fugitive SW-FE TSP/PM-10 - OPACITY Pugmill Feed Bin 99 100 100 Method S Existing PM10 Monitor and Plant #2 Visual 0 acity Evaluation-BS-6_ 4 Fugitive SW-FE TSP/PM-10 - OPACITY Pugmill Bin 99 100 __100 Method S Existing PM10 Monitor and Plant #2 Visual 0 acity Evaluation-BS-7 4 Fugitive SW-FE TSP/PM-10 - OPACITY Feed Bin 99 99 Method S PM10 Monitor and Plant #2 =t acity Evaluation-BS-8 4 Fugitive SW-FE TSP/PM1-10 - OPACITY PugTlll Feed Bin 99 100 100 Method Existing PM 1 0 Monitor and Plant #2 Visual Opacity Evaluation-ESS-9 4 11 Fugitive SW-FE TSP/PM-110 - OPACITY PugTW Bin 99 100 100 Method u 99. Other FuliV enclosed or in buflding with chemical soludons, as needed

AIR POLLUTION CONTROL AND MONITORING EQUIPMENT: COMPANY NAME Dominion Terminal Associates DATE 10-15-02 REGISTRATION NUMBER 60 997 M AIR POLLUTION CONTROL EQUIPMENT MONITORING INSTRUMENTATION Ω D % EFFICIENCY С O TYPE SPECIFY TYPE, MEASURED UNIT D VENT/ DEVICE JUSE POLLUTANT, AND RECORDER REF. E STACK REF. POLLUTANT/PARAMETER MANUFACTURER CODE USED NO. NO. (See instructions) AND MODEL NUMBER L) DESIGN ACTUAL Rotary Dump Discharge PM10 Monitor and =@ acity Evaluation-BC-1 0 TP-03 TC-FC TSP/PM-10 - OPACITY Belt 099 99 Method S PMIO Monitor and acity Evaluation-SC-2 0 TP-04 TC-BH TSPtPM-10 - OPACITY Silo #1 Feed Belt 099 99 99 Method S Existing PM 1 0 Monitor and TP-06 TC-FC TSP/PM-10 - OPACITY Silo #1 Discharge Belt 099 99 99 Visual 0 acit y Evaluation-BC-3 0 Method S Existin PM10 Monitor and Visual t acity Evaluation-BC-4 0 TP-07 LO-Fc TSP/PM- 1 0 - OPACITY Stockpile Feed Belt 099 99 99 Method Existing PM10 Monitor and Visual Opacity Evaluation-OC-5 TP-09 TC-FC TSP/PM-10 - OPACITY CC/Coke Transfer Belt 099 99 99 Method 9 Existing PM10 Monitor and L 0 TP-12 , TC-FC , TSP/PM-10 - OPACITY CC/Coke Transfer Belt 099 99 Visual Opacity Evaluation-_Method 9 Code L - AIR POLLUTION CONTROL EQUIPMENT TYPE 1 .Settling Chamber 9. Electrostatic Precipitator 13.ABSORBER 2. Cyclone (a) hot side (a) packed tower 3. Multicyclone (b) cold side (b) spray tower 4. Cyclone scrubber (c) high voltage (c) tray tower 5. Orifice scrubber (d) low voltage (d) venturi 6. Mechanical scrubber (e) single stage (e) other (specify) 7. Venturi scrubber (f) two stage 14. ADSORBER (a) fixed throat (g) other (specify) (a) activated carbon (b) variable throat 10. Filter (b) molecular sieve B. Mist eliminator (a) baghouse (e) activated alumina (b) other (specify) (d) silica gel 1 1 . Catalytic Afterburner (e) other (specify) 1 2. Direct Flame Afterburner 15. Condenser (specify) 9 9. Other (Full enclosures wlchomical solution, as needs *Partially@enc. discharge wlchomical solution, as neede.

AIR POLLUTION CONTROL AND MONITORING EQUIPMENT: COMPANY NAME Dominion Terminal Associates DATE 10-15-02 REGISTRATION NUMBER 60 997 M AIR POLLUTION CONTROL EQUIPMENT MONITORING INSTRUMENTATION Ω D % EFFICIENCY С O TYPE SPECIFY TYPE, MEASURED UNIT D VENT/ DEVICE (USE POLLUTANT, AND RECORDER REF. E STACK REF. POLLUTANT/PARAMETER MANUFACTURER CODE USED NO. NO. (See instructions) AND MODEL NUMBER L) DESIGN ACTUAL I Existing PM 1 0 Monitor and Visual 0 scity Evaluation-SC-7 0 TP-13 LO-RC TSP/PM-10 - OPACITY Stockpile Feed Belt 099 98 98 Method 9 =0110 Monitor and BC-8 0 TP-80 TC-FC TSP/PM-10 - OPACITY CC/Coke Transfer Belt 099 99 99 Method 9 acity Evaluation-Existing PM 1 0 Monitor and Visual 0 acity Evaluation-BC-9 0 TP-81 TC-BH TSP/PM-10 - OPACITY CC/Coke Transfer Belt 099 99 99 Method Existing PM 1 0 Monitor and Visual 0 acity Evaluation-EC-10 0 TP-87 LO-CS TSPIPM-10 - OPACITY Loadout Belt 099 99 99 Method 9 PM10 Monitor and acity Evaluation-BC-1 1 0 TP-84 __TC-BH TSP/PM-10 - OPACITY Silo Transfer Belt 099 99 99 Method S Existing PM 1 0 Monitor and BC-12 0 TP-86 @TC+C TSPIPM-10 - OPACITY Silo Transfer Belt 099 99 99 Visual OS acity Evaluation-Method Existing PM 1 0 Moni and Visual Opacity Evalu on-0 TP-78 TC FC TSP/PM-110 - OPACITY Stockpile Reversing Belt 099 99 99 Method u Code L - AIR POLLUTION CONTROL EQUIPMENT TYPE I .Settling Chamber 9. Electrostatic Precipitator 13.ABSORBER 2. Cyclone (a) hot side (a) packed tower 3. Multicyclone (b) cold side (b) spray tower 4. Cyclone scrubber (c) high voltage (e) tray tower 5. Orifice scrubber (d) low voltage (d) venturi 6. Mechanical scrubber (e) single stage (e) other (specify) 7. Venturi scrubber (f) two stage (a) fixed throat (g) other (specify) 15. Condenser (specify) (b) variable throat 1 0. Filter 99, Other Full enclosures with chemkol soludon s, as 8. Mist eliminator (a) baghouse needed (b) other (specify) 'Pardally onc. discharge wlchomical soludon, as needed 1 1 . Cataiytic Afterburner 1 2. Direct Flame Afterburner

AIR POLLUTION CONTROL AND MONITORING EQUIPMENT: - MPANY NAME Dominion Terminal Associates DATE 10-15-02TREGISTRATION NUMBER 60 997 COIII M AIR POLLUTION CONTROL EQUIPMENT MONITORING INSTRUMENTATION D % EFFICIENCY C O TYPE SPECIFY TYPE, MEASURED UNIT D VENT/ DEVICE IUSE POLLUTANT, AND RECORDER REF. E STACK REF. POLLUTANT/PARAMETER MANUFACTURER CODE USED NO. NO. (See instructions) AND MODEL NUMBER L) DESIGN ACTUAL I Clean Coal Stockpile Food PM10 Monitor and =t acity Evaluation -BC-14 4 TP-16 TC-PC TSPIPM-10 - OPACITY Belt 099 99 99 Method 9 Exifting PM10 Monitor and Visual 0 scity Evaluation-BC-15 4 TP-18 TC-FC TSP/PM-10 - OPACITY Crusher Feed Belt 099 99 99 Method 8 Existing PM10 Monitor and Visual 0 acity Evaluation-BC-16 4 TP-21 TC-FC TSP/PM-10 - OPACITY Crusher Feed Belt 099 99 99 Method 9 PM10 Monitor and =t acity Evaluation-BC-17 4 TP-24 TC-PC TSP/PM-10 - OPACITY Screen SS-1 Oversize Belt 099 99 Me thod 9-Existin PM10 Monitor and Screen SS-1 Discharge Visual t acity Evaluation-BC-18 4 TP-27 TC-PC TSP/PM-10 - OPACITY Belt 099 99 99 Method I-xisting PM10 Monitor and Visual Osacity Evaluation-BC-19 4 TP-28 TC-FC TSP/PM-110 - OPACITY Pugmill Bin Feed Belt 099 99 99 Metho d PM I 6 M-onitor and I =t acity Evaluation-8 -20 1 4 TP-30 TC-FC TSP/PM-10 - OPACITY 1 Pugmill Mixer Feod Belt 099 1 99 9 9 Method Code L - AIR POLLUTION CONI MENT TYPE 1 .Settling Chamber 9. Electrostatic Precipitator 13.ABSORBER 2. Cyclone (a) hot side (a) packed tower 3. Multicyclone (b) cold side (b) spray tower 4. Cyclone scrubber (c) high voltage (e) tray tower 5. Orifice scrubber (d) low voltage (d) venturi 6. Mechanical scrubber (e) single stage (e) other (specify) 7. Venturi scrubber (f) two stage 14.ADSORBER (a) fixed throat (g) other (specify) (a) activated carbon (b) variable throat 10. Filter (b) molecular sieve 8. Mist eliminator (a) baghouse (c) activated alumina lb) other (specify) (d) silica gel 1 1. Catalytic Afterburner (e) other (specify) 1 2. Direct Flame Afterburner 1 5. Condenser (specify) 99. Other Full Enclosures wlchomical solution, as needed

AIR POLLUTION CONTROL AND MONITORING EQUIPMENT: COMPANY NAME Dominion Terminal Associates FDATE 10-15-02TREGISTRATION NUMBER 60997 M AIR POLLUTION CONTROL EQUIPMENT MONITORING INSTRUMENTATION Ω D % EFFICIENCY С O TYPE SPECIFY TYPE, MEASURED UNIT D VENT/ DEVICE IUSE POLLUTANT, AND RECORDER REF. E STACK REF. POLLUTANT/PARAMETER MANUFACTURER CODE USED NO. I NO. I NO. (See lnistructional AND MODEL NUMBER L) DESIGN ACTUAL Pugmill Mixer Discharge PM10 Monitor and BC-21 4 TP-32 TC-FC TSP/PM-10 - OPACITY Belt 099 99 =@ acity Evaluation-99 Method C TP-33- Existing PMIO Monitor and BC-22 4 36-39 TC-FC TSP CITY Visual 0 acity Evaluation-/PM-10 - OPA Spreader Belt 099 99 99 Method 9 ExistinQ PM10 Monitor and BC-23 4 TP-35 TC-FC Visual 0 acity Evaluation-TSP/PM-10 - OPACITY Briguatter Discharge Belt 099 99 Method 9 PM10 Monitor and =t acity Evaluation-BC-24 4 TP-38 TC-FC TSIP/PM-110 - OPACITY Stiquatter Discharge Belt 099 99 99 Method 9 PM10 Monitor and BC =t acity Evaluation--25 4 TP-41 TC-FC TSIP/PM-110 - OPACITY Briquetter Discharge Belt 099 99 99 Me thod Existing PM10 Monitor and Visual Opacity Evaluation-BC-26 , 4 , TP-42. TC-FC , TSIP/IPM-110 - OPACITY Screen SS-2 Food Belt 099 99 99 Method 9 Code L - AIR POLLUTION CONTROL EQUIPMENT TYPE 1 .Settling Chamber 9. Electrostatic Precipitator 13.ABSORBER 2. Cyclone (a) hot side (a) packed tower 3. Multicyclone (b) cold side (b) spray tower 4. Cyclone scrubber (c) high voltage (c) tray tower 5. Orifice scrubber (d) low voltage (d) venturi 6. Mechanical scrubber (e) single stage (a) other (specify) 7. Venturi scrubber (f) two stage 14. ADSORBER (a) fixed throat (g) other (specify) (a) activated carbon (b) variable throat 1 0. Filter (b) molecular sieve 8. Mist eliminator (a) baghouse (c) activated alumina (b) other (specify) (d) silica gel 1 1 . Catalytic Afterburner (a) other (specify) 1 2. Direct Flame Afterburner 1 5. Condenser (specify) 99, Other (specify) Full Enclosufes wlchomical solution, j needed 'Partially-enclosed discharge wlchomical solution, as needed Page Revised July 31, 2001 12 FORM 7

AIR POLLUTION CONTROL AND MONITORING EQUIPMENT: COMPANY NAME Dominion Terminal Associates FDATE 10-15-02TREGISTRATION NUMBER 6 0997 M AIR POLLUTION CONTROL EQUIPMENT MONITORING INSTRUMENTATION Ω D % EFFICIENCY С O TYPE SPECIFY TYPE, MEASURED UNIT D VENT/ DEVICE (USE POLLUTANT, AND RECORDER REF. E STACK REF. POLLUTANT/PARAMETER MANUFACTURER CODE USED NO. I NO. I NO. lSes Instructions) AND MODEL NUMBER L) DESIGN ACTUAL M10 Monitor and BC-27 4 TP-43 TC-FC TSP/PM-10 - OPACITY 99 99 =CcitV Evaluation-Recirculating Belt 099 Method 9 Screen SS-2 Discharge Existing PM IO Monitor and BC-28 4 TP-45 Visual Opacity Evaluation-TC-FC TSPIPM-10 - OPACITY Belt 099 99 99 Method 9 Existing PM10 Monitor and Visual Opacity Evaluation-BC-29 4 TP-46 TC-PC TSP/PM-10 - OPACITY Synfuel Stacking Belt 099 99 Method U Existing PM IO Monitor and BC-30 4 TP-49 TC-FC TSP/PM-10 - OPACITY Crusher Feed Belt 099 99 99 Visual 0 s city Evaluation-Method 9 Existing PM 1 0 Monitor and ec-31 4 T Visual Opacity Evaluation-P-52 TC-FC TSP/PM-10 - OPACITY Screen SS-3 Oversize Belt 099 99 99 Method 9 Existing PM IO Monitor and Visual 0 acity Evaluation-BC-32 4 TP-55 TC-FC TSP/PM-10 - OPACITY Plant Feed Belt 099 99 99 Method 9 PMIO Monitor and L BC-33_ 4 TP-56 LjC-Fq_j TSP/PM-10 - OPACITY Pugmill Bin Feed Belt 099 99 =@ acity Evaluation-Code L - AIR POLLUTION CONTROL EQUIPMENT TYPE 99 Method 1 .Settling Chamber 9. Electrostatic Precipitator 13.ABSORBER 2. Cyclone (a) hot side (a) packed tower 3. Multicyclone (b) cold side (b) spray tower 4. Cyclone scrubber to) high voltage (e) tray tower 5. Orifice scrubber (d) low voltage (d) venturi 6. Mechanical scrubber (e) single stage (a) other (specify) 7. Venturi scrubber (f) two stage 14.ADSORBER (a) fixed throat (g) other tspecify) (a) activated carbon (b) variable throat 1 0. Filter (b) molecular sieve 8. Mist eliminator (a) baghouse (c) activated alumina (b) other (specify) (d) silica gel 1 1. Catalytic Afterburner (e) other (specify) 1 2. Direct Flame Afterburner 15. Condenser (specify) 99. Other Full Enclosures wlchomical solution, as noodee Page Revised July 31, 2001 12 FORM 7

AIR POLLUTION CONTROL AND MONITORING EQUIPMENT: COMPANY NAME Dominion Terminal Associates IDATE 10-15-02TREGISTRATION NUMBER 6 0997 M AIR POLLUTION CONTROL EQUIPMENT MONITORING INSTRUMENTATION Ω D % EFFICIENCY С O TYPE SPECIFY TYPE, MEASURED UNIT D VENT/ DEVICE (USE POLLUTANT, AND RECORDER REF. E STACK REF. POLLUTANT/PARAMETER MANUFACTURER CODE USED NO. NO. I NO. ISse instructions) AND MODEL NUMBER L) DESIGN ACTUAL Existing PMIO Monitor and BC-34 4 TP-58 TC-FC TSP/PM-10 - OPACITY Pugmill Mixer Feed Belt 099 99 99 Visu al 0 acity Evaluation-Method 9 Pugmill Mixer Discharge Existin PM10 Monitor and Visual t acity Evaluation-BC-35 4 TP-60 TC-FC TSP/PM-10 - OPACITY Belt 099 99 99 Method 9 TP-61 - PM 1 0 Monitor and 64-67 TC-FC TSPIPM-10 - OPACITY Spreader Belt 099 99 =t scity Evaluation-BC-36 4 Method 8 PMIO Monitor and Briquetter Discharge Bolt 099 99 99 =@ acity Evaluation-BC-37 4 TP-63 TC-FC TSP/PM-10 - OPACITY Method C Existinfj PM10 Monitor and Visual 0 acity Evaluation-BC-38 4 TP-66 TC-FC TSP/PM-10 - OPACITY Briguetter DischaNe Belt 099 99 99 Met hod 8 Existing PM 1 0 Monitor and BC-39 4 TP-69 TC-FC TSP/PM-10 - OPACITY 099 99 99 Visual Opacity Evaluation-I 40"etter Discharge Belt Method 9 R POLLUTION CONTROL EQUIPMENT TYPE I .Settling Chamber 9. Electrostatic Precipitator 13.ABSORBER 2. Cyclone (a) hot side (a) packed tower 3. Multicyclone (b) cold side (b) spray tower 4. Cyclone scrubber (c) high voltage (e) tray tower 5. Orifice scrubber (d) low voltage (d) venturi 6. Mechanical scrubber (e) single stage (e) other (specify) 7. Venturi scrubber (f) two stage 14. ADSORBER (a) fixed throat (g) other (specify) (a) activated carbon (b) variable throat IO. Filter (b) molecular sieve 8. Mist eliminator (a) baghouse (c) activated alumina (b) other (specify) (d) silica gel 1 1 . Catalytic Afterburner (e) other (specify) 1 2. Direct Flame Afterburner 1 5. Condenser (specify) 99. Other (specify) Full Enclosures wlchemical solution, i needed I Partiafly-enclosed discharge wlchomical solution, as needed Page Revised July 31, 2001 12 FORM 7

AIR POLLUTION CONTROL AND MONITORING EQUIPMENT: DATE 10-15-02 T [COMPANY NAME Dominion Terminal Associates REGISTRATION NUMBER 60997 M AIR POLLUTION CONTROL EQUIPMENT MONITORING INSTRUMENTATION Ω D % EFFICIENCY С O TYPE SPECIFY TYPE, MEASURED UNIT D VENT/ DEVICE (USE POLLUTANT, AND RECORDER REF. E STACK REF. POLLUTANT/PARAMETER MANUFACTURER CODE USED NO. NO. ISee instructions) AND MODEL NUMBER L) DESIGN ACTUAL I Existing PMIO Monitor and Visual 0 acity Evaluation-BC-40 4 TP-70 TC-FC TSP/PM-10 - OPACITY Screen SS-4 Feed Belt 099 99 99 Method 9 PMIO Monitor and acity Evaluation-BC-41 4 TP-71 LO-FC TSP/PM-10 - OPACITY Recirculating Belt 099 99 99 Method C Screen SS-4 Discharge Existing PM10 Monitor and Visual 0 acity Evaluation-BC-42 4 TP-73 TC-FC TSP/PM-10 - OPACITY Belt 099 99 99 Method Existing PM10 Monitor and Visual 0 acity Evaluation-BC-43 4 TP-74 TC-PC TSP/PM-10 - OPACITY Synfuel Stacking Belt 099 99 Method 9 Existing PM10 Monitor and Stockpile Loadout Transfer Visual Ogacity Evaluation-BC-44 4 TP76 TC-FC TSP/PM-10 - OPACITY Belt 099 99 Method Code L - AIR POLLUTION CONTROL EQUIPMENT TYPE 1 .Settling Chamber 9. Electrostatic Precipitator 13.ABSORBER 2. Cyclone (a) hot side (a) packed tower 3. Multicyclone (b) cold side (b) spray tower 4. Cyclone scrubber (c) high voltage (c) tray tower 5. Orifice scrubber (d) low voltage (d) venturi Mechanical scrubber (e) single stage (a) other (specify)
 Venturi scrubber (t) two stage 14. ADSORBER (a) fixed throat (g) other (specify) (a) activated carbon (b) variable throat 1 0. Filter (b) molecular sieve 8. Mist eliminator (a) baghouse (c) activated alumina (b) other (specify) (d) silica gel 1 1. Catalytic Afterburner (a) other (specify) 1 2. Direct Flame Afterburner 1 5. Condenser (specify) 99. OtherFul/ Enclosures wlchomical solution, as noodea I Partially-enclosed discharge wlchomical solution, as needed Page Revised July 31, 2001 12 FORM 7

AIR POLLUTION CONTROL AND MONITORING EQUIPMENT-COMPANY NAME Dominion Terminal Associates FDATE 10-15-02TREGISTRATION NUMBER 6 0997 M AIR POLLUTION CONTROL EQUIPMENT MONITORING INSTRUMENTATION Ω D % EFFICIENCY С O TYPE SPECIFY TYPE, MEASURED UNIT D VENT/ DEVICE (USE POLLUTANT, AND RECORDER REF. E STACK REF. POLLUTANTIPARAMETER MANUFACTURER CODE USED NO. NO. ISae instructions) AND MODEL NUMBER L) DESIGN ACTUAL Existing PM IO Monitor and BC-45 4 TP-89 TC-FC TSP/PM-10 - OPACITY Coal Transfer Belt 099 99 99 Visual 0 acity Evaluation-Method 9 Mio Monitor and =tPacity Evaluation-BC-46 4 TP-91 TC-FC TSP/PM-10 - OPACITY Coal Transfer Belt 099 99 99 Method PM 10 Monitor and SC-47 4 TP-92 TC-FC TSP/PM-10 - OPACITY Coal Transfer Belt 099 99 99 acity Ev aluation-Method 9 =tPM10 Monitor and BC-48 4 TP-93 TC-FC TSP/PM-10 - OPACITY Coal Transfer Belt 099 99 99 Method a city Evaluation-Code L - AIR POLLUTION CONTROL EQUIPMENT TYPE 1 .Settling Chamber 9. Electrostatic Precipitator 13.ABSORBER 2. Cyclone (a) hot side (a) packed tower 3. Multicyclone (b) cold side (b) spray tower 4. Cyclone scrubber (c) high voltage (c) tray tower 5. Orifice scrubber (d) low voltage (d) venturi 6. Mechanical scrubber (e) single stage (a) other (specify) 7. Venturi scrubber (f) two stage 14. ADSORBER (a) fixed throat (g) other (specify) (a) activated carbon (b) variable throat 1 0. Filter (b) molecular sieve 8. Mist eliminator (a) baghouse (c) activated alumina (b) other (specify) (d) silica gal 1 1 . Catalytic Afterburner (e) other (specify) 1 2. Direct Flanie Afterburner 15. Condenser (specify) 99. Other (specify) Full Enclosures wlchomical solution, i needed I Partially-enclosed discharge wlchemical solution, as needed

AIR POLLUTION CONTROL EQUIPMENT - SUPPLEMENTAL INFORMATION: SEE ATTACHED

COMPANY NAME Dominion Terminal Associates DATE 10-15-02 REGISTRATION NUMBER 60 997

LIQUID LIQUID AIR- REGENERATION CHAMBER PRESSURE FLOW MEDIUM CLEANING TO- METHOD TEMP. RETENTION DROP TYPE RATEigpm) METHOD NUMBER NUMBER OF CLOTH FILTER & CYCLE (EF) TIME (mc) (in. H20) DEVICE (Use (Codes OF FIELDS SECTIONS RATIO MATERIAL INLET TIME (mc) (if Code s REF. Code (Codes 4,5, 4,6,6.7, (Codes S. (Codes (tpm) TEMP (Codes (Codes 3,4, 5,6,7, 13,14) (Code 9) 9,10) (Cod@ 10) (Code 10) (EF) (Code 14) 11,12) 11,12) 10,13) SER@CAD hMalE XIFINFIREILOTION CONTROL DEVICE SHEETS

Code L - AIR POLLUTION CONTROL EQUIPMENT TYPE
1 . Settling Chamber 9. Electrostatic Precipitator 13.ABSORBER
2. Cyclone (a) hot side (a) packed tower
3. Multicyclone (b) cold side (b) spray tower
4. CYGIone scrubber (c) high voltage (e) tray tower
5. Orifice scrubber (d) low voltage (d) venturi
6. Mechanicai scrubber (e) single stage (e) other (specify)
7. Venturi scrubber (f) two stage 14. ADSORBER
(a) fixed throat (g) other (specify) (a) activated carbon
(b) variable throat 1 0. Filter (b) molecular sieve
8. Mist eliminator (a) baghouse (c) activated alumina
(b) other (specify) (d)silica gal
1 1. Catalytic Afterburner (a) other (specify)
9. Other (specify)

Page Revised September 26, 2001 13 FORM 7

BAGHOUSE AIR POLLUTION CONTROL DEVICE SHEET BAGHOUSE NO. 1 - SURGE SILO NO. I (ID BS-1) Complete a Baghouse Air Polluton Control Device Sheet for each baghouse contro l device. 1 . Baghouse Control Device Identficaton Number: FE-BH 2. Manufacturer'snameandmodelidenbficabon: JohnsonMarshSkvkleenPCSB10-10DustCo llector 3. Number of compartments in baghouse: 1 4. Number of compartments online dudng normal operation and conditons: 1 5. Gas flow rate into baghouse: 8,000 ACFM @ Ambient OFand 14.7 PSIA 6. Total cloth area: 2396 ft2 7. Operabng air to cloth rato: 7.5 : 1 fUmin 8. Filter media type: Polyester fabric 9. Stabilized stabc pressure drop across baghouse: 2 inches H20 10. Baghouse operabon is: 0 Confinuous 0 Automatc 0 intermittent 11. Method used to clean bags: 0 Shaker n Pulse jet 0 Reverse jet 12. Emission rate of parficulate mafter entedng and exibng baghouse at maximum design operafing conditons: Entering baghouse: lb/hr and 20 grains/ACF Exifing baghouse: lb/hr and .015 grains/ACF 13. Guaranteed minimum baghouse collecton efficiency: 99 % 14. Provide a wrftten descdpfion of the capture system (e.g. hooding and ductw ork arrangement), size of ductwork and hoods and air volume, capacity and operabng horsepower of fan: Ductwork +20" pipe - Fan 9200 SCFM (cb 10" WC & 70'. 15. Describe the method of disposal for the collected matedal: Baghouse is bin vent. Material is dropped directly from the bags back to the silo.

BAGHOUSE AIR POLLUTION CONTROL DEVICE SHEET BAGHOUSE NO. 2 - SURGE SILO NO. 2 & 3 (ID BS-2 and BS-3) Complete a Baghouse Air Polluton Control Device Sheet for each baghouse contro l device. 1 . Baghouse Control Device Idenbficabon Number: FE-BH 2. Manufacturer'snameandmodelidenbficabon: JohnsonMarshSkvkleenPCSB10-IODustCo llector 3. Number of compartments in baghouse: 1 4. Number of compartments online dudng normal operabon and conditons: 1 5. Gas flow rate into baghouse: 18,000 ACFM @ Ambient - OFand 14.7 PSIA 6. Total cloth area: -2396 ff 7. Operatng air to cloth rato: 7.5 : I ft/min 8. Filter media type: Polyester fabric 9. Stabilized stabc pressure drop across baghouse: 2 inches H20 10. Baghouse operabon is: 0 Confinuous n Automatc 0 intermittent 11. Method used to clean bags: 0 Shaker n Pulse jet 0 Reverse jet 12. Emission rate of particulate mafter entedng and exifing baghouse at maximu m design operabng conditons: Entedng baghouse: lb/hr and 20 grains/ACF Exibng baghouse: lb/hr and .015 grains/ACF 13. Guaranteed minimum baghouse collecton efficiency: 99 % 14. Provide a wrftten descdpbon of the capture system (e.g. hooding and ductwo rk arrangement), size of ductwork and hoods and air volume, capacity and operatng horsepower of fan: Ductwork +50'- single fan on discharge of 2 houses; piped in parallel - Fan 20 ,700 ACFM (d 1 0" WC 15. Describe the method of disposal for the collected material: Baghouse is a bin vent. Material is dropped directly from the bags back to the silo.

CRITERIA POLLUTANT EMISSIONS:

MPANY NAME Dominion Terminal Associates -FDATE 10-15-02] REGISTRATION NUMBER 6 0997 FCO

m MAXIMUM EMISSION RATES TO ATMOSPHERE OF CRIFERIA POLLUTANTS
0
D TOTAL 10 pM OR SULFUR NITROGEN CARBON VOLATILE
SUSPENDED SMALLER DIOXIDE OXIDES MONOXIDE ORGANIC LEAD
c PARTICULATES PARTICULATES* COMPOUNDS STATE
0 (TSP) (Pmlo) (SO2) (NOx) (CO) (VOC) (Pb) OPERATING
UNIT D PERMIT BASIS OF
REF. E EMISSION ESTIMATE
CAP
NO. lb/hr tons/yr lb/hr tons/yr lb/hr tons/yr lb/hr tons/yr lb/hr tons/yr I l
b/hr tons/yr lb/hr tons/yr I IY*s/No) (USE CODE M)
CR-1 4 0.07 0.30 0.035 0.145 1 NO 2CR-2 4 0.07 0.30 0.035 0.145 1 1 NO 2
SS-1 4 0.35 1.53 0.17 0.72 NO 2
SS-2 4 0.35 1.53 0.17 0.72 1 NO 2

SS-3 4 0.35 1.53 0.17 0.72 -1 I NO 2

ss-4 4 0.35 1.53 0.17 0.72 1 1 1 NO 2

Code M - Emission Estimate Method lprovide detailed calculations including ass umed control efficiency of control equipment to support reported values.)

 Stack Test (include a copy of summary)
 Material Balance (include calculations)
 Emission Factor (identify source) and include calculations
 Other (describe)
 * TSP, PMio, and VOCs should also be split up by component and reported under TOXIC OR HAZARDOUS POLLUTANTS.

CRITERIA POLLUTANT EMISSIONS: --FDATE 10-1 5-02 TREGISTRATION NUMBER 60997 FCOMPANY NAME Dominion Terminal Associates m MAXIMUM EMISSION RATES TO ATMOSPHERE OF CRITERIA POLLUTANTS 0 D TOTAL 10 pM OR SULFUR NITROGEN CARBON VOLATILE SUSPENDED SMALLER DIOXIDE OXIDES MONOXIDE ORGANIC LEAD C PARTICULATES PARTICULATES* COMPOUNDS STATE 0 (TSP) (Pmlo) (SO2) (NOx) (CO) (VOC) (Pb) OPERATING UNIT PERMIT BASIS OF D EMISSION REF. E CAP ESTIMATE NO. lb/hr tons/yr lb/hr tonslyr lb/hr tonslyr lb/hr tonslyr lb/hr tons/yr lb/ hr tons/yr lb/hr tons/yT 4Y*s1No\$ (USE CODE Ml OS-1 01 0.02 0.09 0.01 1 0.04 1 NO 2 OS-2 01 0.02 0.08 0.01 0.04 NO 2 OS-3 01 0.02 0.08 0.01 0.04 NO 2 OS-4 01 0.02 0.10 0.01 I -0.06 NO 2 OS-5 41 0.01 0.04 0.00 0.02 No 2 OS-6 41 0.00 0.00 0.00 0.00 NO 2 OS-7 41 0.01 0.04 0.00 1 0.02 NO 2

Code M - Emission Estimate Method lprovide detailed calculations including ass umed control effidiency of control equiprrient to support reported values.)

 Stack Test (include a copy of summary)
 Material Balance (include calculations)
 Emission Factor (identify source) and include calculations
 Other (describe)
 * TSP, PMio, and VOCs should also be split up by component and reported under TOXIC OR HAZARDOUS POLLUTANTS.

CRITERIA POLLUTANT EMISSIONS: -T-DATE 10-15-02 -FREGISTRATION NUMBER 60997 Fc oMPANY NAME Dominion Terminal Associates m MAXIMUM EMISSION RATES TO ATMOSPHERE OF CRITERIA POLLUTANTS 0 D TOTAL 10 pm or sulfur nitrogen carbon volatile SUSPENDED SMALLER DIOXIDE OXIDES MONOXIDE ORGANIC LEAD C PARTICULATES PARTICULATES' COMPOUNDS STATE 0 (TSP) (PM I o) (SO2) (NOx) (CO) (VOC) (Pb) OPERATING PERMIT BASIS OF UNIT D EMISSION REF. E CAP ESTIMATE NO. lb/hr tons/yr lb/hr tons/yr lb/hr tons/yr lb/hr tons/yr lb/hr tons/yr lb/ hr tons/yr lb/hr tons/yr I (Yet/No) JUSE CODE M) BS-1 0 1 0.00 0.00 I 0.00 0.00 NO 99 BS-2 0 1 0.00 0.00 0.00 I 0.00 I NO 1 99 BS-3 0 0.00 0.00 0.00 0.00 NO 99 BS-4 4 0.00 0.00 0.00 0.00 NO 99 BS-5 4 0.00 0.00 0.00 0.00 NO 99 BS-6 4 0.00 0.00 0.00 0.00 NO 99 BS-7 4 0.00 0.00 0.00 0.00 NO 99 BS-8 4 0.00 0.00 0.00 0.00 NO 99 SS-9 4 0.00 0.00 0.00 0.00 NO 99 Code M - Emission Estimate Method (provide detailed calculations including ass umed control ofiiciency of control equipnient to support reported values.1 1. Stack Test (include a copy of summary) 2. Material Balance (include calculations) 3. Emission Factor (identify source) and include calculations 99. Other (describeYully-enclosed in building or fully-enclosed wlwatef and ch emical solution

* TSP, PMlo, and VOCs should also be split up by component and reported under TOXIC OR HAZARDOUS POLLUTANTS.

CRITERIA POLLUTANT EMISSIONS: -FREGISTRATION NUMBER 60997 [COMPANY NAME Dominion Terminal Associates DATE10-15-02 m MAXIAWN EMISSION RATES TO ATMOSPHERE OF CREETIA POLLUTANTS 0 D TOTAL 10 pM OR SULFUR NITROGEN CARBON VOLATILE SUSPENDED SMALLER DIOXIDE OXIDES MONOXIDE ORGANIC LEAD C PARTICULATES PARTICULATES' COMPOUNDS STATE 0 (TSPI (Pmlol (SO2) (NOx) (CO) (VOCI (Pb) OPERATING UNIT D PERMIT BASIS OF REF. E EMISSION ESTIMATE CAP NO. I lb/hr tons/yr lb/hr tonslyr lb/hr tonstyr lb/hr tonslyr lb/hr tons/yr l b/hr tons/yr lb/hr tons/yr I (Yes/Nol (USE CODE Ml BC 1 0 0.04 0.16 0.02 0.08 1 NO 2 BC-2 0 0.04 0.16 0.02 0.08 I NO 2 BC-3 0 0.01 0.05 0.01 0.03 NO 2 BC-4 I 0 0.01 0.05 0.01 0.03 NO 2 BC-5 0 0.01 1 0.05 0.01 1 0.03 No 2 BC-6 0 0.01 0.05 0.01 0.03 NO 2 0.05 0.01 1 0.03 NO 2

Code M - Emission Estimate Method lprovide detailed calculations including ass unied oontrol efficiency of control equiprrient to supporl reported values.)

 Stack Test (include a copy of summary)
 Material Balance (include calculations)
 Emission Factor (identify source) and include calculations
 Other (describe)
 * TSP, PMio, and VOCs should also be split up by component and reported under TOXIC OR HAZARDOUS POLLUTANTS.

CRITERIA POLLUTANT EMISSIONS: -FREGISTRATION NUMBER 60997 Fc oMPANY NAME Dominion Terminal Associates DATE 10-15-02 m MAXIMUM EMISSION RATES TO ATMOSPHERE OF CRFTERFA POLLUTANTS 0 D TOTAL 10 pM OR SULFUR NITROGEN CARBON VOLATILE SUSPENDED SMALLER DIOXIDE OXIDES MONOXIDE ORGANIC LEAD C PARTICULATES PARTICULATES' COMPOUNDS STATE 0 (TSP) (Pmlo) (SO2) (NOx) (VOC) (Pb) OPERATING UNIT D PERMIT BASIS OF REF. E EMISSION CAP ESTIMATE NO. I I lb/hr tonstyr lb/hr tons/yr lb/hr tons/yr lb/hr tons/yr lb/hr tons/y r lb/hr tonslyr lb/hr tons/yr (Yen/No) (USE CODE M) sc-8 0 0.03 0.13 0.01 1 0.06 1 1 NO 2 BC-9 0 0.01 0.06 0.01 0.03 1 NO 2 EC-10 0 0.03 1 0.13 0.01 0.06 NO 2 BC-1 I 0 0.01 0.06 0.01 1 0.03 1 1 NO 2 BC-1 2 0 0.03 0.13 0.01 0.06 I NO 2 8 3 --- 0.13 0.01 0.06 1 1 1 1 NO 2 SC-14 4 0.02 0.08 0.01 1 0.04 NO 2

Code M - Emission EAtimate Method (provide detailed calculations including ass umed control efficiency of control equipment to support reported values.)

 Stack Test (imelude a copy ol sLwnmary)
 Material Balance (include calculations)
 Emission Factor (identify source) and include calculations
 Other (describel
 * TSP, PMio, and VOCs should also be split up by component and raported under TOXIC OR HAZARDOUS POLLUTANTS.

CRITERIA POLLUTANT EMISSIONS:

Fc oMPANY NAME Dominion Terminal Associates -1 DATE 10-1 5-02TREGISTRATION NUM BER 60997

M MAXIMUM EMISSION RATES TO ATMOSPHERE OF CRITERIA POLLUTANTS Ω D TOTAL 10 pM OR SULFUR NITROGEN CARBON VOLATILE SUSPENDED SMALLER DIOXIDE OXIDES MONOXIDE ORGANIC LEAD C PARTICULATES PARTICULATES' COMPOUNDS STATE 0 (TSP) (Pmlo) (SO2) (NOx) (CO) (VOC) (Pb) OPERATING UNIT D PERMIT BASIS OF REF. E EMISSION NO. I lb/hr CAP ESTIMATE tons/yr lb/hr tons/yr lb/hr tons/yr lb/hr tons/yr lb/hr tonslyr I lb/hr tons/ yr lb/hr tons/yr (Yes/Nol (USE CODE Ml BC-1 5 41 0.02 0.08 0.01 1 0.04 1 NO 2 BC-1 6 41 0.01 0.04 0.00 0.02 1 NO 2 BC-1 7 41 0.00 I 0.00 0.00 0.00 NO 2 BC-le 4 0.01 0.04 0.00 1 0.02 NO 2 SC-19 4 0.01 0.04 0.00 0.02 No 2 BC-20 1 41 0.01 0.04 0.00 1 0.02 NO 2 BC-21 41 0.01 0.03 0.00 0.01 I I No 2 8 -22 41 0.00 I 0.01 I 0.00 0.00 I I I I NO 2 Code M - Emission Estimate Method lprovide detailed calculations including ass umed control officioney of control equipment to support reported values.) 1. Stack Test (include a copy of summary@ 2. Material Balance (include calculations) 3. Emission Factor (identify source) and include calculations 99. Other (describe) * TSP, PMio, and VOCs should also be sptit up by component and reported under TOXIC OR HAZARDOUS POLLUTANTS.

CRITERIA POLLUTANT EMISSIONS: -FDATE 10-15-02 -FREGISTRATION NUMBER 60997 [COMPANY NAME Dominion Terminal Associates m MAXIMUM EMISSION RATES TO ATMOSPHERE OF CRITER14 POLLUTANTS 0 D TOTAL 10 PM OR SULFUR NITROGEN CARBON VOLATILE SUSPENDED SMALLER DIOXIDE OXIDES MONOXIDE ORGANIC LEAD C PARTICULATES PARTICULATES* COMPOUNDS STATE 0 (TSP) (Pmlo) (SO2) (NOx) (CO) (VOC) (Pb) OPERATING UNIT D PFRMIT BASIS OF REF. E EMISSION ESTIMATE CAP NO. lb/hr tons/yr lb/hr tons/yr lb/hr tons/yr lb/hr tonslyr lb/hr tons/yr I lb/hr tonslyr lb/hr tons/yr (YeSINO) IUSE CODE M) SC-23 4 0.00 0.01 0.00 0.00 I NO_ 2 BC-24 4 0.00 0.01 0.00 0.00 No 2 BC-25 4 0.00 0.01 0.00 I 0.00 NO 2 B -26 41 0.01 0.03 0.00 0.01 NO 2 BC-27 4 1 0.00 0.00 0.00 0.00 NO 2 SC-28 41 0.01 0.03 0.00 I 0.01 NO 2 BC-29 41 0.01 0.03 0.00 0.01 NO 2 BC-30 4@ 0.01 0.04 0.00 0.02 NO 2 Code M - Emission Estimate Method (provide detailed calculations including ass umed control efficiency of control equiprrient to support reported values.) 1. Stack Test (include a copy of summary) 2. Material Balance (include calculations) 3. Emission Factor (identify source) and include calculations 99. Other (describe) * TSP, PMio, and VOCs should also be split up by component and reported under TOXIC OR HAZARDOUS POLLUTANTS.

MPANY NAME Dominion Terminal Associates -T DATE 10-1 5-02] REGISTRATION NUMBE R 60997 [CO] m MAXIMUM EMISSION RATES TO ATMOSPHERE OF CRITERIA POLLUTANTS 0 D TOTAL 10 VM OR SULFUR NITROGEN CARBON VOLATILE SUSPENDED SMALLER DIOXIDE OXIDES MONOXIDE ORGANIC LEAD C PARTICULATES PARTICULATES* COMPOUNDS STATE 0 (TSP) (Pmlo) (SO2) (NOx) (CO) (VOC) (Pb) OPERATING UNIT D PERMIT BASIS OF REF. E EMISSION ESTIMATE CAP NO. lb/hr tons/yr lb/hr tons/yr lb/hr tons/yr lb/hr tons/yr lb/hr tons/yr lb /hr tons/yr lb/hr tons/yr lyetimo) (USE CODE Ml BC-31 1 4 1 0.00 0.00 0.00 0.00 I NO 2 s -32 41 0.01 0.04 0.00 1 0.02 1 NO 2 SC-33 4 0.01 0.04 0.00 0.02 1 NO 2 BC-34 4 0.01 0.04 1 0.00 0.02 1 1 NO 2 BC-35 1 41 0.01 0.03 0.00 0.01 I NO 2 BC-36 41 0.00 0.01 0.00 0.00 I I I I NO 2

BC-37 41 0.00 I 0.01 0.00 0.00 No 2

CRITERIA POLLUTANT EMISSIONS:

Code M - Emission Estimate Method lprovide detailed calculations including ass umed controi efficiency of control equiprrwnt to support reported values.)

1. Stack Test (include a copy of Summary)

2. Material Balance (include calculations)

3. Emission Factor (identify source) and include calculations

99. Other (describe)

 \ast TSP, PMio, and VOCs should also be split up by component and reported under TOXIC OR HAZARDOUS POLLUTANTS.

CRITERIA POLLUTANT EMISSIONS:

COMPANY NAME Dominion Terminal Associates -FDATE 10-15-02] REGISTRATION NUMBER 60997

m MAXIMU*f EMISSION RATES TO ATMOSPHERE OF CRITERIA POLLUTANTS Ω D TOTAL 10 pM OR SULFUR NITROGEN CARBON VOLATILE SUSPENDED SMALLER DIOXIDE OXIDES MONOXIDE ORGANIC LEAD C PAFITICULATES PARTICULATES' COMPOUNDS' STATE 0 (TSP) tpmlo) (S02) (NOX) (CO) (VOC) (Pb) OPERATING UNIT D PERMIT BASIS OF REF. EMISSION E CAP ESTIMATE NO. lb/hr tons/yr lb/hr tons/yr lb/hr tonslyr lb/hr tons/yr lb/hr tons/yr lb/ hr tons/yr lb/hr tonslyr I IY"/No) iUSE CODE M) BC-38 41 0.00 0.01 I 0.00 0.00 NO 2 BC-39 41 0.00 0.01 0.00 0.00 NO 2 BC-40 41 0.01 1 0.03 0.00 I 0.01 NO 2 BC-41 4 0.00 0.00 0.00 0.00 NO 2 BC-42 4 0.01 0.03 1 0.00 0.01 NO 2 BC-43 4 0.03 0.14 0 01 1 0.06 NO 2 BC-44 4 0.01 0.05 0.01 0.03 NO 2

Code M - Emission Estimate Method lprovide detailed calculations including ass umed control efficiency of control equipment to support reported values.)

 Stack Test (include a copy of summary)
 Material Balance (include calculations)
 Emission Factor (identify source) and include calculations
 Other (describe)
 * TSP, PMlo, and VOCs should also be split up by component and reported under TOXIC OR HAZARDOUS POLLUTANTS.

CRITERIA POLLUTANT EMISSIONS:

COMPANY NAME Dominion Terminal Associates DATE 10-15-02] REGISTRATION NUMBER 6 0997

m MAXIMUM EMISSION RATES TO ATMOSPHERE OF CRITERIA POLLUTANTS
0
D TOTAL 10 pM OR SULFUR NITROGEN CARBON VOLATILE
SUSPENDED SMALLER DIOXIDE OXIDES MONOXIDE ORGANIC LEAD
C PARTICULATES PARTICULATES' COMPOUNDS STATE
0 (TSP) (Pmio) (SO2) (NOx) (CO) (VOC) (Pb) OPERATING
UNIT D PERMIT BASIS OF
REF. E EMISSION ESTIMATE
CAP
NO. lb/hr tons/yr lb/hr tons/yr lb/hr tons/yr lb/hr tons/yr lb/hr tons/yr lb/h
hr tons/yr lb/hr tons/yr (Yes/Nol JUSE CODE M)
BC-45 4 0.04 0.16 0.02 0.08 NO 2
BC-47 4 0.04 1 0.16 0.02 0.08 NO 2
BC-48 4 0.04 0.16 0.02 0.08 I NO 2

Code M - Emisition Estimate Method (provide detailed calculations including as sumed control efficiency of control equiprrient to support reported values.)

 Stack Test (include a copy of summary)
 Material Balance (include calculations)
 Emission Factor (identify source) and include calculations
 Other (describe)
 * TSP, PMio, and VOCs should also be split up by component and reported under TOXIC OR HAZARDOUS POLLUTANTS.

TOXIC OR HAZARDOUS OR OTHER REGULATED POLLUTANT EMISSIONS FROM PROPOSED FACILI TY: DATE 1 0 --- RFEGISTRATION NUMBER 60997 COMPANY NAME Dominion Terminal Associates -15- 2 m MAXIMUM EMISSION RATES TO ATMOSPHERE OF POLLUTA T (Specify pollutant)* 0 D CONTROLLED UNCONTROLLED C 0 STATE OPERATING BASIS OF UNIT D PERMITS ESTIMATES REF. E VENT/ NAME EMISSION CAP NO. STACK NO CAS # lb/hr tons/yr lb/hr tons/yr IYES/NO) (USE CODE M) CR-1 4 Source TSP 0.07 0.30 7.0 30.66 PM10 0.035 0.145 3.29 14.41 No 2 4 Source TSP 0.07 0.30 7.0 30@66 PM10 0.035 0.145 3.29 14.41 No 2 4 Source TSP 0.35 1.5325 35.0 153.3 SS-1 PM10 0.165 0.72 16.45 72.05 No Source TSP 0.35 1.5325 35.0 153.3 SS-2 4 PM10 0.165 0.72 16.45 72.05 No 2 Source TSP 0.35 1.5325 35.0 153.3 SS-3 4 PMIO 0.165 0.72 16.45 72.05 No 2 TSP 0.35 1.5325 35.0 153.3 SS-4 4 Source I PM10 0.165 1 0.72 16.45 .6@5 No 2 -Co-de M - Emission Estimate Method (provide detailed calculations including a ssumed control efficiency of control equipment, if applicable) 1. Stack Test (include a copy) 2, Material Balance (include calculations) 3. Emission Factor (identify) 99. Other (describe) It you have other regulated pollutants, list as the first CAS number. Toxic P ollutant means a pollutant on the designated list at the fTont of this appliCa tiDn. Particulate matter and volatile organic compounds are not toxic pollutants as generic classes of substances, b ut individual substances within these classes may be toxic pollutants because their toxic properties r because a TLV (tm) has been established. See the toxic pollutant listing in the front o f this application. Specify which pollutants are also reported as components of TSP, PMio, orVOCson the previous page.

TOXIC OR HAZARDOUS OR OTHER REGULATED POLLUTANT EMISSIONS FROM PROPOSED FACILI TY: DATE 10-1 5- REGISTRATION NUMBER 60997 COMPANY NAME Dominion Terminal Associates 2 m MAXIMUM EMISSION RATES TO ATMOSPHERE OF POLLUTANT (Specify pollutant)* 0 D CONTROLLED UNCONTROLLED C 0 STATE OPERATING BASIS OF UNIT D PERMITS ESTIMATES REF. E VENT/ NAME EMISSION CAP NO. I STACK NO CAS # lb/hr tons/yr lb/hr tonstyr (YES/NO) (USE CODE M) BS-4 4 Fugitive TSP 0.00 0.00 0.00 0.00 PM10 0.00 0@00 0.00 0.00 No 99 4 Fugitive TSP 0.00 0.00 0.00 0.00 PM10 0.00 0@00 0.00 0.00 No 99 4 Fugitive TSP 0.00 0.00 0.00 0.00 SS-6 PM10 0.00 0.00 0.00 0.00 No 99 BS-7 4 Fugitive TSP 0.00 0.00 0.00 0.00 PMIO 0.00 0.00 0.00 0.00 No 99 BS-8 4 Fugitive TSP 0.00 0.00 0.00 0.00 PM10 0.00 0.00 0.00 0.00 No 99 BS-9 4 Fugitive TSP 0.00 0.00 0.00 0.00 PM10 0.00 0.00 0.00 0.00 No 99 Code M - Emission Estimate Method (provide detailed calculations including ass umed control efficiency of control equipment, if applicable) 1. Stack Test (include a copy) 2. Material Balance (include calculations) 3. Emission Factor (identify) 99. Other (describe) -FULL Y-ENCLOSED IN BUILDING OR FULL Y-ENCLOSED WIWA TER & CHEMICAL SOLUTION If you have other regulated pollutants, list as the first CAS number. Toxic P ollutant means a pollutant on the designated list at the front of this applica tion. Particulate matter and volatile organic compounds are not toxic pollutants as generic classes of substances, b ut individual substances within these classes may be toxic pollutantsbacauseth eirtoxicpropertiesor becausea TLV (tm) has been established. See the toxic pollutant listing in the front o f this application. Specify which pollutants are also reported as components of TSP, Pmlo, or VOCs on the previous page.

TOXIC OR HAZARDOUS OR OTHER REGULATED POLLUTANT EMISSIONS FROM PROPOSED FACILI TY: COMPANY NAME Dominion Terminal Associates DATE 10-15-02 REGISTRATION NUMBER 60 997 m MAXIMUM EMISSION RATES TO ATMOSPHERE OF POLLUTANT lspecify pollutant)" 0 D CONTROLLED UNCONTROLLED 0 STATE OPERATING BASIS OF UNIT D PERMITS ESTIMATES REF. E VENT/ NAME EMISSION CAP NO. STACK NO CAS lb/hr tons/yr lb/hr tons/yr (YESINO) (USE-CODE Ml OS-5 4 Fugitive TSP 0.01 0.04 0.90 3.92 PM10 0.00 0.02 0.42 1.84 No 2 4 Fugitive TSP 0.00 0.00 0.00 0.02 OS-6 PM10 0.00 0.00 0.00 0.01 No 2 4 Fugitive TSP 0.01 0.04 0.90 3.92 OS-7 PMIO 0.00 0.02 0.42 1.84 No 2

Code M - Emission Estimate Method (provide detailed calculations including ass umed control efficiency of control equipment, if applicable)

Stack Test (include a copy)
 Material Balance (include calculations)
 Emission Factor (identify)
 Other (describe)

If you have other regulated pollutants, list as the first CAS number. Toxic P ollutant means a pollutant on the designated list at the front of this applica tion. Particulate matter and volatile organic compounds are not toxic pollutants as generic classes of substances, b ut individual substances within these classes may be toxic pollutants because their toxic propertiesor because a TLV (tm) has been established. See the toxic pollutant listing in the front o f this application, Specify which pollutants are also reported as components o f TSP, PMio, orVOCsonthe previous page.

TOXIC OR HAZARDOUS OR OTHER REGULATED POLLUTANT EMISSIONS FROM PROPOSED FACILI TY: COMPANY NAME Dominion Terminal Associates DATE 10-15-02 REGISTRATION NUMBER 60 997 m MAXIMUM EMISSION RATES TO ATMOSPHERE OF POLLUTANT (Specify pollutant)* 0 D CONTROLLED UNCONTROLLED С O STATE OPERATING BASIS OF UNIT D PERMITS ESTIMATES REF. E VENT/ NAME EMISSION CAP NO. STACK NO CAS # lb/hr tons/yr lb/hr tons/yr IYES/NO) IUSE CODE M) FBC-14 4 TP-16 TSP 0.02 0.08 1.87 8.18 PM10 0.01 0.04 0.88 3.87 No 2 4 TP-18 TSP 0.02 0.08 1.87 8.18 1 BC-1 5 PM10 0.01 0.04 0.88 3.87 No 2 4 TP-21 TSP 0.01 0.04 0.93 4.09 SC-16 PM10 0.00 0.02 0.44 1.94 No 2 4 TP-24 TSP 0.00 0.00 0.00 0.00 BC-1 7 PMIO 0.00 0.00 0.00 0.00 No 2 4 TP-27 TSP 0.01 0.04 0.93 4.09 BC-18 PMIO 0.00 0.02 0.44 1.94 No 2 4 TP-28 TSP 0.01 0.04 0.93 4.09 EC_19 I I PM10 0.00 1 0.02 0.44 1.94 No 2 Code M - Emission Estimate Method (provide detailed calculations including ass umed control efficiency of control equipment, if applicable) 1. Stack Test (include a copy) 2. Material Balance (include calculations) 3. Emission Factor (identify) 99. Other (describe) If you have other regulated pollutants, list as the first CAS number. Toxic P ollutant means a pollutant on the designated list at the front of this applica tion. Particulate matter and volatile organic compounds are not toxic pollutants as generic classes of substances, b ut individual substances within these classes may be toxic poliutants because their toxic properties r because a TLV (tm) has been established. See the toxic pollutant listing in the front o f this application. Specify which pollutants are also reported as components of TSP, PMio, orVOCsontheprevious page.

TOXIC OR HAZARDOUS OR OTHER REGULATED POLLUTANT EMISSIONS FROM PROPOSED FACILI TY: COMPANY NAME Dominion Terminal Associates DATE 10-15-02 REGISTRATION NUMBER 60 997 m MAXIMUM EMISSION RATES TO ATMOSPHERE OF POLLUTA T (Specify pollutant)* Ω D CONTROLLED UNCONTROLLED С O STATE OPERATING BASIS OF UNIT D PERMITS ESTIMATES REF. E VENTI NAME EMISSION CAP NO. STACK NO CAS # lb/hr tonslyr lb/hr tons/yr (YESINO) IUSE CODE M) BC-20 4 TP-30 TSP 0.01 0.04 0.93 4.09 PM10 0.00 0.02 0.44 1.94 No 2 4 TP-32 TSP 0.01 0.03 0.62 2.73 BC-21 PMIO 0.00 0.01 0.30 1.29 No 2 4 TP-33-36-39 TSP 0.00 0.01 0.21 0.91 BC-22 PM10 0.00 0.00 0.10 0.43 No 2 4 TP-35 TSP 0.00 0.01 0.21 0.91 PM10 0.00 0@00 0.10 0.43 No -2 4 TP-38 TSP 0.00 0.01 0.21 0.91 Bq-24 -@ _ I - PM10 0.00 0.00 0.10 1 0.43 No 2 Code M - Emission Estimate Method (provide detailed calculations including ass umed control efficiency of control equipment, if applicable) 1. Stack Test (include a copy) 2. Material Balance (include calculations) 3. Emission Factor (identify) 99. Other (describe) If you have other regulated pollutants, list as the first CAS number. Toxic P ollutant means a pollutant on the designated list at the front of this applica tion. Particulate matter andvolatile organic compounds are not toxic pollutants as generic classes of substances, b ut individual substances within these classes may be toxic pollutantabecause t heirtoxicpropertiesor becausea TLV (tm) has been established. See the toxic pollutant listing in the front o f this application. Specify which pollutants are also reported as components of TSP, PMlo, or VOCson thaprevious page.

TOXIC OR HAZARDOUS OR OTHER REGULATED POLLUTANT EMISSIONS FROM PROPOSED FACILI TY: COMPANY NAME Dominion Terminal Associates DATE 10-15-02 REGISTRATION NUMBER 60 997 m MAXIMUM EMISSION RATES TO ATMOSPHERE OF POLLUTA T (Specify pollutant)* Ω D CONTROLLED UNCONTROLLED С 0 STATE OPERATIN BASIS OF UNIT D PERMITS ESTIMATES REF. E VENT/ NAME EMISSION CAP NO. STACK NO CAS lb/hr tons/yr lb/hr tons/yr (YES/NO) (USE CODE Ml BC-25 4 TP-41 TSP 0.00 0.01 0.21 0.91 PM10 0.00 0.00 0.10 0.43 No 2 4 TP-42 TSP 0.01 0.03 0.62 2.73 BC-26 PM10 0.00 0.01 0.30 1.29 No 2 4 TP-43 TSP 0.00 0.00 0.00 0.00 BC-27 PM10 0.00 0.00 0.00 0.00 No 2 4 TP-45 TSP 0.01 0.03 0.62 2.73 BC-28 PM10 0.00-0.01 0.30 1.29 No ----2 4 TP-46 TSP 0.01 0.03 0.62 2.73 BC-29 PM10 0.00 0.01 0.30 1.29 No 4 TP-49 TSP 0.01 0.04 0 93 4.09 L B-c --.3 0----L- PM10 0.00 0.02 --0'44 1.94 No 2 Code M - Emission Estimate Method (provide detailed calculations includina ass umed control efficiency of control equiprnent, if applicable) 1. Stack Test (include a copy) 2. Material Balance (include calculations) 3. Emission Factor (identify) 99. Other (describe) If you have other regulated pollutants, list as the first CAS number. Toxic P ollutant means a pollutant on the designated list at the front of this applica tion. Particulate matter and volatile organic compounds are not toxic pollutants as generic classes of substances, b ut individual substances within these classes may be toxic pollutants because

theirtoxicpropertiesor becausea TLV (tm) has been established. See the toxic pollutant listing in the front o f this application. Specify which pollutants are also reported as components ofTSP, PMio, orVOCson the previous page.

TOXIC OR HAZARDOUS OR OTHER REGULATED POLLUTANT EMISSIONS FROM PROPOSED FACILI TY:

COMPANY NAME Dominion Terminal Associates DATE 10-15-02 REGISTRATION NUMBER 60 997

m MAXIMUM EMISSION RATES TO ATMOSPHERE OF POLLUTA T (Specify pollutantl* $\mathbf{0}$

D CONTROLLED UNCONTROLLED

c
0 STATE OPERATING BASIS OF
UNIT D PERMITS ESTIMATES
REF. E VENT/ NAME EMISSION CAP
NO. STACK NO CAS # lb/hr tons/yr lb/hr tons/yr (YES/NO) (USE CODE M)

BC-31 4 TP-52 TSP 0.00 0.00 0.00 0.00 PM10 0.00 0.00 0.00 0.00 No 2

4 TP-55 TSP 0.01 0.04 0.93 4.09 BC-32 PMIO 0.00 0.02 0.44 1.94 No 2

4 TP-56 TSP 0.01 0.04 0.93 4.09 PM10 0.00 0.02 0.44 1.94 No 2

4 TP-58 TSP 0.01 0.04 0.93 4.09 1 SC-34 PM10 0.00 0.02 0.44 - 1-.94 No 2-----

4 TP-60 TSP 0.01 0.03 0.62 2.73

SC-35 PM10 0.00 0.01 0.30 ____J_-1.29 No 2

Code M - Emission Estimate Method (provide detailed calculations including ass umed control efficiency of control equipment, if applicable)

1. Stack Test (include a copy)

2. Material Balance (include calculations)

3. Emission Factor Jidentity)

99. Other (describe)

If you have other regulated pollutants, list as the first CAS number. Toxic P ollutant means a pollutant on the designated list at the front of this app(ica tion. Particulate matter and volatile

organic compounds are not toxic pollutants as generic classes of substances, b ut individual substances within these classes may be toxic pollutants because their toxic propertiesor because a

TLV (tm) has been established. See the toxic pollutant listing in the front o f this application. Specify which pollutants are also reported as components of TSP, PMlo, or VOCS on the previous

page.

TOXIC OR HAZARDOUS OR OTHER REGULATED POLLUTANT EMISSIONS FROM PROPOSED FACILI TY: DATE 10-15-0--] REGISTRATION NUMBER 60997 COMPANY NAME Dominion Terminal Associates 2 m MAXIMUM EMISSION RATES TO ATMOSPHERE OF POLLUTA T (Specify pollutant)* 0 D CONTROLLED UNCONTROLLED C 0 STATE OPERATING BASIS OF UNIT D PERMITS ESTIMATES REF. E VENTT NAME EMISSION CAP NO. STACK NO CAS lb/hr tons/yr lb/hr tonstyr (YESINOI (USE CODE Ml SC-36 4 TP-61 TSP 0.00 0.01 0.21 0.91 PMIO 0.00 0.00 0.10 0.43 No 2 4 TP-63 TSP 0.00 0.01 0.21 0.91 PM10 0.00 0.00 0.10 0.43 No 2 4 TP-66 TSP 0.00 0.01 0.21 0.91 BC-38 PM10 0.00 0.00 0.10 0.43 No 2 4 TP-69 TSP 0.00 0.01 0.21 0.91 BC-39 PM10 0.00 0.00 0.10 0.43 No 4 TP-70 TSP 0.01 0.03 0.62 2.73 L 01-40 PM10 0.00 0.01 0.30 1.29 No 2 Code M - Emission Estimate Method (provide detailed calculations including ass umed control efficiency of control equipment, if applicable) 1. Stack Test (include a copy) 2. Material Balance (include calculations) 3. Emission Factor (identify) 99. Other (describe) If you have other regulated pollutants, list as the first CAS number. Toxic P ollutant means a pollutant on the designated list at the front of this applica tion. Particulate matter andvolatile organic compounds are not toxic pollutants as generic classes of substances, b ut individual substances within these classes may be toxic pollutants because theirtoxic properties r because a TLV (tm) has been established. See the toxic pollutant listing in the front o f this application. Specify which pollutants are also reported as components of TSP, PMio, or VOCs on the previous page.

TOXIC OR HAZARDOUS OR OTHER REGULATED POLLUTANT EMISSIONS FROM PROPOSED FACILI TY:

COMPANY NAME Dominion Terminal Associates DATE 10-15-02 REGISTRATION NUMBER 60 997

m MAXIMUM EMISSION RATES TO ATMOSPHERE OF POLLUTANT (Specify pollutant)* $\mathbf{0}$

D CONTROLLED UNCONTROLLED

С

0 STATE OPERATING BASIS OF UNIT D PERMITS ESTIMATES REF. E VENTI NAME EMISSION CAP NO. I STACK NO CAS # lb/hr tons/yr lb/hr tons/yr (YES/NO) (USE CODE M) 4 TP-71 TSP 0.00 0.00 0.00 0.00

PM10 0.00 0.00 0.00 0.00 No 2

4 TP-73 TSP 0.01 0.03 0.62 2.73 BC-42 PM10 0.00 0.01 0.30 1.29 No 2

4 TP-74 TSP 0.01 0.03 0.62 2.73 BC-43 PM10 0.00 0.01 0.30 1.29 No 2

4 TP-76 TSP 0.01 0.05 1.25 5.47 BC-44 PM10 0.01 0.03 0.59 2.59 No 2

Code M Emission Estimate Method (provide detailed calculations including assum ed control efficiency of control equipment, if applicable)

Stack Test (include a copy)
 Material Balance (include calculations)
 Emission Factor (identify)
 Other (describe)

If you have other regulated pollutants, list as the first CAS number. Toxic P ollutant means a poliutant on the designated list at the front of this applica tion. Particulate matter and volatile organic compounds are not toxic pollutants as generic classes of substances, b ut individual substances within these classes may be toxic pollutants because their toxicproperties or because a TLV (tm) has been established. See the toxic pollutant listing in ihe front o f this application. Specify which pollutants are also reported as components of TSP, PMIo, orVOCson thaprevious page.

TOXIC OR HAZARDOUS OR OTHER REGULATED POLLUTANT EMISSIONS FROM PROPOSED FACILI TY: DATE 10-15-0--] REGISTRATION NUMBER 60997 COMPANY NAME Dominion Terminal Associates 2 m MAXIMUM EMISSION RATES TO ATMOSPHERE OF POLLUTA T (Specify pollutant1* 0 D CONTROLLED UNCONTROLLED C 0 STATE OPERATING BASIS OF UNIT D PERMITS ESTIMATES REF. E VENT/ NAME EMISSION CAP NO. STACK NO CAS # lblhr tons/yr lb/hr tons/yr (YES/NO) (USE CODE M) BC45 4 TP-89 TSP 0.01 0.05 1.22 5.34 PM10 0.01 0.03 0.58 2.52 No 2 4 TP-91 TSP 0.01 0.05 1.22 5.34 BC-46 PM10 0.01 0.03 0.58 2.52 No 2 4 TP-92 TSP 0.01 0.05 1.22 5.34 BC-47 PM10 0.01 0.03 0.58 2.52 No 2 4 TP-93 TSP 0.01 0.05 1.22 5.34 BC-48 PM10 0.01 0.03 0.58 2.52 No 2 Code M - Emission Estimate Method (provide detailed calculations including ass umed control efficiency of control equipment, if applicable) 1. Stack Test (include a copy) 2. Material Balance (include calculations) 3. Emission Factor (identify) 99. Other (describe) If you have other regulated pollutants, list as the first CAS number. Toxic P ollutant means a pollutant on the designated list at the front of this applica tion. Particulate matter and volatile organic compounds are not toxic pollutants as generic classes of substances, b ut individual substances within these classes may be toxic pollutants because their toxic propertiesor because a TLV (tm) has been established. See the toxic pollutant listing in the front o f this application. Specify which pollutants are also reported as components

of TSP, Pmio, or VOCs on he previous page.

EPA ACCEPTED - CONTROL DEVICE LISTING Fugitive Dust Sources Control Device. Control Device Prefix Control Efficienc UNLOADING From Railcar or Truck Fufl Enclosure Vented to Baghouse UL-BH 99 From Railcar or Truck Full Enclosure UL-FE 70 From Railcar or Truck Wet Suppression with Chemical Solution UL-CS 80 From Railcar or Truck Water Spray UL-WS 50 Dump Bins FE and Water Sprays with Chemir-al Solution UD-FC 99 Dump Bins Full Enclosure with water sprays UD-FW 90 CRUSHING AND SCREENING Crushing or Scre Full Enc(osure Vented to Baghouse CS-BH 99 Crushing or Screening Wet Suppression with Chemicals CS-CS 90 Crushing or Scre Full Enclosure with Water Spray CS-FW 90 Crushing or Screening ull Enclosure/Wet Suppression/Chemicals CS-FC 99 Crushing or Screening Full enclosure CS-FE 80 TRANSFER AND CONVEYING Conveyor Transfer Point Full Enclosure Vented to Baghouse TC-BH 99 Conveyor Transfer Point Full Enclosure vAth Water Spray TC-FW 90 Conveyor Transfer Point FE and Water Spray with Chemical Solution TC-FC 99 Conveyor Transfer Point PE and Water Spray with Chemical Solution TC-PC 95 Conveyor Transfer Point Full enclosure TC-FE 80 Conveyor Transfer Point Water spray TC-WS 70 Conveyor Transfer Point Partial Enclosure TC-PE 50 CLEANING Wet Wash Operations Full Enclosure WW-FE 100 STORAGE Loading onto Piles Full Enclosure SL-FE 80 -Loading onto Piles Telescopic Chute SL-TC 75 Loading onto Piles Wet Suppression with Chemical Solution SL-CS 75 -Loading onto Piles Wind Guard SL-WG 50 Wind Erosion Full Enclosure SW-FE 100 Wind Erosion Wet Suppression with Chemical Solution SW-CS 99 Wind Erosion Water Spray SW-Ws 75 LOADING OUT -Frorn Stockpiles Wet Suppression with Chemical Solution LO-CS 95 From Stockpiles Under-pile Conveyor with Water Sprays LO-UC 85 From Stockpiles Bucket Wheel Reclaimer LO-RC 80 LOADING To Railcar, Barge or Truck Wet Suppression wfth Chemical Solution LR-CS 80 -To Railcar, Barge or Truck Telescopic Chute with Water Sprays LR-TW 90 HAULROADS Unpaved Water Truck with Chemical Solution HR-CS 85 -Unpaved Water Truck with Water Spray HR-WS 70
For purposes of a General Permit for coal handling and preparation facilities, the following emission calculation methods will provide an adequate estimate of facility emissions fr om point sources and fugitive emission sources. However, where source (facility) specific tests are availab le, such information is Other emission factors may be acceptable provided documentation a preferable. s to accuracy and appropriateness are provided by the applicant. Completely fill out the following fNPUTS pages with all requested facility spe cific information. INPUTS Page I Include all information for each emission source and Name of applicant: Domini on Terminal Associates transfer point as listed in the permd application. Name of plant: Pier 11 Faci lity Modification October, 2002 1. CRUSHING AND SCREENING (including all primary and secondary cmshers and scr eens) Number of Max. raw coal Max. raw coal Corytrol Control Crushers input per input per Device Efficiency and Screens hour(Tons) year(Tons) 10 Number % 2 700 6,132,000 CS-FC 99 Secondary CrushEing@j I Screening 700 5,132,000 CS-FC 2. TRANSFER POINTS (Including all conveyor transfer points, equipment transfer points etc.) PM PM-10 k article Size Muftiplier (dimensionless) 0.74 1 U= Mean Wind Speed (mph) 10 5 [obtained troM NWS Transfer Transfer Point Desciiption Mateflat Maximtjm control Contra[Point Include ID Numbers of all conveyors, Moisture Transfer Rate Device Effic iency ID No. crushers, screens, stockpiles, etc. involved Content % _T P-H I TPY 11 0 Numbe % TP-01 Railcar Dump #1 to Belt BC-01 6 1,370 12,000,000 UD-FC 99 TP-02 Railcar Dump #2 to Beft BC-01 6 1,370 12,000,000 UD-FC 99 TP-03 Beft BC-01 to Beft SC-02 6 2,740 24,000,000 TC-FC 99 TP-04 Batt BC-02 to Surge Silo #1 (BS-01) 6 2.740 24,000,000 TC-BH 99 TP-05 Silo #1 to Belt BC-03 6 2,740 24,000,000 LO-BH 99 TP-06 Belt BC-03 to Beft BC-04 6 913 8,000,DDO TC-FC 99 TP-07 Beft BC-04 to Stockpile 6 913 8,000,000 LO-RC 99 TP-08 Belt BC-03 to Belt BC-05 6 1,826 16,000,000 TC-FC 99 TP-09 Beft BC-05 to Beft BC-1 3 6 913 8,000,000 TC-FC 99 TP-10 Bett BC-1 3 to Stockpile 6 913 8,000,000 LO-RC 99 TP-1 I Belt BC-05 to Beft BC-06 6 913 8,000,000 TC-FC 99 TP-12 Beft BC-06 to Beft BC-07 6 913 8,000,000 TC-FC 99 TP-13 Belt BC-07 to Stockpile 6 913 8,000,000 LO-RC 99 TP-14 Stockpile to Belt BC-1 3 6 1,400 12,264,000 LO-RC 99 TP-15 Beft BC-1 3 to Beft BC-1 4 6 1,400 12,264,000 TC-FC 99 TP-16 Bett BC-14 to Synfuel Feed Stockpile 6 1,400 12,264,000 TC-PC 99 TP-17 StDckpile to Beft BC-1 5 6 1,400 12,264,000 TC-FC 99 TP-18 Bett BC-1 5 tD Crushers CR- 1 ICR-2 6 1,400 12,264,000 TC-FC 99 TP19 Stockpile to Bin #4 6 700 6,132,0010 LO-FC 99 TP20 Bin #4 to Bett BC- 1 6 6 700 6,132,000 LO-FC 99

TP21 Beft BC- 1 6 to Crusher 6 700 6,132,000 TC-FC 99 TP22 Crusher CR- I tD Screen SS- 1 6 700 6,132,000 CS-FC 99 TP23 Screen SS-1 to Oversize Bett BC-1 7 6 0.23 2,000 LO-FC 99 TP24 Belt BC-1 7 to Stockpile 6 0.23 21000 TC-PC 99 TP25 Oversize Stockpile to Feed Stockpile 6 0.23 2,000 LO-RC 99 TP26 Screen SS-1 to Beft BC- 1 8 6 700 6,132,000 LO-FC 99 TP27 Beft BC-1 8 to Belt BC-1 9 6 700 6,132,000 TC-FC 99 TP28 Belt BC-19 to Pugmill Feed Bin BS-5 6 700 6,132,000 TC-FC 99 TP29 Pug. Feed Bin to Bett BC-20 6 700 6,132,000 LO-FC 99 TP30 Beft BC-20 to Pugmill Mixer BS-6 6 700 6,132,000 TC-FC 99 TP32 Beft BC-21 tD Beft BC-21 8 700 6,132,000 LO-FC 99 TP33 Bett BC-21 tD Beft BC-22 8 700 6,132,000 TC-FC 99 TP34 Briquefter #1 to Belt BC-23 8 233 2,044,000 LO-Fc 99 TP35 Belt BC-23 to Belt BC-26 8 233 2,044,000 TC-FC 99 TP36 Beft BC-22 to Briguetter #2 8 233 2,044,000 TC-FC 99

TP37 Briquetter #2 to Beft BC-24 8 233 2,044,000 LO-FC 99 TP38 Beft BC-24 to Beft BC-26 8 233 2,044,000 TC-FC 99 TP39 Beit BC-22 to Briguetter #3 8 233 2,0",000 TC-FC 99 TP40 Briquetter #3 to Bett BC-25 8 233 2,044,000 LO-FC 99 TP41 Beft BC-25 to Beft BC-26 8 233 2,044,0D0 TC-FC 99 TP42 Beft BC-26 to Screen SS-2 8 700 6,132,000 TC-FC 99 TP43 Screen SS-2 to Recirculafing beft BC-27 8 0.23 21000 LO-FC 99 TP44 Screen SS-2 to Beft BC-28 8 700 6,132,000 LO-FC 99 TP45 Beft BC-28 to Belt BC-29 8 700 6,132,000 LO-FC 99 TP46 Belt BC-29 to Synfuel Stockpile OS-7 8 700 6,132,000 TC-FC 99 TP48 Bin #7 to Beft BC-30 6 700 6,132,000 LO-FC 99 TP49 Belt BC-30 to Crusher 6 700 6,132,000 TC-FC 99 TP51 Screen SS-3 to Oversize Belt BC-31 6 0.23 2,000 LO-FC 99 TP52 Belt BC-31 to OversizeStockpile 6 0.23 2,000 TC-PC 99

TP53 Oversize Stockpile to Feed Stockpile 6 0.23 2,000 LO-RC 99 TP54 Screen SS-3 to Bett BC-32 6 700 6,132,000 LO-FC 99 TP55 Beft BC-32 to Bett BC-33 6 700 6,132,000 TC-FC 99 TP56 Belt BC-33 to Pugmill Feed Bin BS-8 6 700 6,132,000 TC-FC 99 TP57 Pug. Feed Bin to Beft BC-34 6 700 6,132,000 LO-FC 99 TP58 Belt BC-34 to Pugmill Mixer BS-9 6 700 6,132,000 TC-FC 99 TP59 Pug. Mixer to Belt BC-35 8 700 6,132,000 LO-FC 99 TP60 Beft BC-35 to Beft BC-36 8 700 6,132,000 TC-FC 99 TP61 Bett BC-36 to Briguetter #4 8 233 2,044,000 TC-FC 99 TP62 Briquefter #4 to Beft BC-37 8 233 2,044,000 LO-Fc 99 TP63 Belt BC-37 to Beft BC-40 8 233 2,044,000 TC-FC 99 TP64 Beft BC-36 to Briguetter #5 8 233 2,044,000 TC-FC 99 TP65 Briqueder #5 to Bett BC-38 8 233 2,0444,000 LO-FC 99 TP66 Beft BC-38 tD Belt BC-40 8 233 2,044,000 TC-FC 99 TP67 Beft BC-36 to Briguetter *6' 8 233 2,044,000 TC-FC 99 TP68 Briguetter #6 to Bett Br-39 8 233 2,044,000 LO-FC 99 TP69 Belt BC-39 to Beft BC-40 8 233 2,044,000 TC-FC 99 TP70 Beft BC-40 to Screen SS4 8 700 6,132,000 TC-FC 99 TP71 Screen SS4 to Recirculating beft BC41 8 0.23 2,000 LO-FC 99 TP72 -Screen SS-4 to Beft BC42 8 0.23 2,000 LO-FC 99 TP73 Beft BC-42 to Soft BC43 8 1 700 6,132,000 TC-FC 99 TP74 Belt BC-43 to Synfuel Stockpile OS-7 8 700 6,132,000 TC-PC 99 TP75 Synfuel Stockpile to Belt BC-44 8 700 6,132,000 LO-FC 99 TP76 Belt SC-44 to Belt BC-1 3 8 1,400 12,264,000 TC-FC 99 TP77 CoaUCoke Stockpile to Belt BC- 1 3 6 1.340 11,736,000 LO-RC 99 TP78 Belt BC-1 3 to Beft BC-06 7 2,740 24,000,000 TC-FC 99 TP79 Beft BC-06 to Bett BC-08 7 2,740 24,000,000 TC-FC 99 TP80 Bett SC-08 to Belt BC-09 7 2,740 24,000,000 TC-FC 99 TP81 Belt BC-09 to Surge Silo #2 BS-2 7 1,370 12,000,000 TC-BH 99 TP82 Silo BS-2 to Beft BC-1 2 7 1,370 12,000,000 LO-BH 99 TP83 13aft BC-09 to Belt BC-1 1 7 1,370 12,000,000 TC-FC 99 TP84 Belt BC-1 1 to Surge Silo #3 BS-3 7 1,370 12,000,000 TC-BH 99 TP85 lsiio BS-3 to Beft BC-1 2 7 1,370 12,000,000 LO-BH 99 @ @Ellt -12toBeltBC-10 - 7 2,740 J@4:@000,000 TC-FC 99 TP87 I Belt BC- IO to Barge 7 1 2,740 124,000,000 1 ET@FC9@9

TP88 Beft #3 to Bett #45 6 2,740 24,000,000 TC-FC 99 TP89 Beft #45 to Beft #1 3 6 2,740 24,000,000 TC-FC 99 TP90 Bett # 1 3 to Beft #46 6 2,740 24,000,000 TC-FC 99 TP91 Beft #46 to Beft #4 6 2,740 24,000,000 TC-FC 99 TP92 Beft #4 to Beft #47 6 2,740 24,000,000 TC-FC 99 TP93 Belt to Belt "8 6 2,740 24,000,000 TC-FC 99 3. WIND EROSION OF STOCKPILES (including all stockpiles of raw coal, clean coa l, coal refuse, etc.)

p = number of days per year with precipitation >0.01 inch 15 1
f = percentage of time that the unobstructed wind speed 201INWS Data
exceeds 12 mph at the mean pile heicht

Source Stockpile Silt Stockpile Control Control ID No Description Content of base area Device Efficiency Material % Max. sqft ID Number %

OS-1 CC/Coke or Synfuel 3.5 440,670 SW-Cs 99 OS-2 CC/Coke or Synfuel 3.5 388,125 SW-Cs 99 OS-3 CC/Coke or Synfuel 3.5 388,125 SW-Cs 99 OS4 CC/Coke or Synfuel 3.5 504.000 SW-Cs 99 OS-6 CC 3.5 200,000 SW-Cs 99 OS-6 CC 3.5 1,000 SW-Cs 99 OS-7 Synfuel 3.5 200,000 SW-Cs 99

INPUTS

4. UNPAVED HAULROADS (Including all equipment traffic involved in process, hau l trucks. ondloaders, etc.) PM PM-10 k = partici size mugiplier I-S = silt content of road surface material 511 p = number of days per year wfth precipitation >0.01 inch

Number Mean Mean Miles Ma)dmum Maxmu: Control Control Item Description Of Vehicle Vehicle per Trips Per Trip. P Device Efficiency -Number I I wheels Weight(tons) Speed (mph) Tdp Hour Year ID Numbe %

1 NO CHANGE RECOMMENDED 2 3 4 5 6 81 91

Page 3

trucksetc.) I= Industrial augmentation factor (dimension less) n = number of traffic lanes S = surface material silt content L = surface dust loading (lb/mile) Mean Miles Maximum Maximum Control Control lte Description Vehicle per Trips Per Trips Per Device Efficiency umm I Tdp Hour Year D Numbe -N ber Weight (tons 11 % I NO CHANGE RECOMMENDED 2 3 4 5 61 71 81

I DO NOT enter data on this Va @e@

EMISSIONS SUMMARY Name of applicant: Dominion Terminal Associates Name of plant: Pier I 1 Facility

Particulate Mafter or PM (for Major Source Determination)

F@ @Uncontrolled PM Controlled P_M___1 I lb/hr I TPY lb/hr TPY I

FUGITIVE EMISSIONS

-Stockpile Emissions 1 9.50 1 41.62 0.10 0.42 -Unpaved Haulroad Emissions 0.00 I 0.00 0.00 I 0.00 -Paved Haulroad Emissions 0.00 0.00 0.00 I 0.00

1 Fugitive emissions Total 9.60 41.62 0.10 I OA2

POINT SOURCE EMISSIONS

Equipment Emissions _::@84.00 1 367-92 1 0.84 3.68 -Transfer Point Emissions 100.37 1 466.04 1.00 4.64

Point Source Emissions Totar 184.77 1 833.96 1.84 &32 I'Note: Point Source Total Controlled PM TPY emissions is used fbr Major Sourc e determination (see below)

Facility Emissions Total 193.87 875.58 1.93 8.74

Facility Potential to Emit (PTE) (Baseline Emissions) 8.32 *(Based on Point Source Total controlled PM TPY emissions from above) CANNOT F XCEED 250 TPY

Particulate Mafter under 10 microns, or PM-10 (for Major Source Determination)

Uncorytrolled PM-10 Controlled EM-10 lb/hr TPY lb/hr TPY

FUGITIVE EMISSIONS

-Stockpile Emissions 1 4.47 1 19.56 0.04 0.20 -Unpaved Haulroad Emissions 0.00 0. 0.00 0.00 Paved Haufroad ErrWssions 0.00 0.00 0.00 0.00

Fugitive Emissions Total 4.47 19.56 0.04 0.20

POINT SOURCE EMISSIONS

Equipment Errgssions 39.48 1 @.92 0.39 1.73 -Transfer Point Emissions 47.29 219.56 0.47 2.20

Point Source Emissions Totar 1 86.77 392.49 0.87 3.92 I'Note Point Source Total Controlled PM-10 TPY emissions is used for Major Sou rce determination - Cannot exceed 100 TPY Controlled

sions Total 91.24 412.06 0.91 4.12

I DO NOT enter data on this page

1. Emissions From CRUSHING AND SCREENING
PM PM-10
Uncontrolled r- Controlled Uncontrolled Controlled
SOUR lb[hr I lb/hr
EMISSION CE I TPY I TPY lb/hr TPY lb/hr TPY
Primary Crushing 14.00 61.32 0.14 1 0.61 28.82 0.07 0.29
Secondary Crushing 0.00 0.00 I 0.00 I 0.00 1 0.00 I 0.00 I 0.00 L@0.00@@
Screening lu.uU iutj.rju I U. tu J.U1 it J:e.9U I 144.1IJ U.33 1.
TOTAL 11 84.00 1 367.92 1 0.gTT---TMJI 39.48 1 172.92 0.39 L 1.73

Source: Air Polludon Engineering Manual and References

EMISSION FACTORS

Piimary Crushing lb/ton processed (maximum raw coal input) Secondary Crushin lb/ton processed (maximum raw coal input) Screening lb/ton processed (maximum raw coal input)

Assumption that PM-10 is 47% of PM (based on particle size multiplier)

2. Emissions From TRANSFER POINTS

Transfer PM PM-10 Point Uncontrolled F- Controlled uncontrollE@:@ Controlled IC) No lbihr TPY lb/hr TPY lb/hr TPY

TP-01 i.83 8.01 0.02 0.08 0.86 3.79 0.01 0.04 TP-02 1.83 8.01 0.02 0.08 0.86 3.79 0.01 0.04 TP-03 3.66 16.01 0.04 0A6 1.73 7.57 0.02 0.08 TP-04 3.66 16.01 0.04 0.16 1.73 7.57 0.02 0.08 TP-05 3.66 16.01 0.04 0.16 1.73 7.57 0.02 0.08 TP-06 1.22 5.34 0.01 0.05 0.58 2.52 0.01 0.03 TP-07 1.22 5.34 0.01 0.05 0.58 2.52 0.01 0.03 TP-08 2.44 10.68 0.02 0.11 1.15 5.05 0.01 0.05 TP-09 1.22 5.34 0.01 0.05 0.58 2.52 0.01 0.03 TP-1 0 1.22 5.34 0.01 0.05 0.58 2.52 0.01 0.03 TP-1 1 1.22 5.34 0.01 0.05 0.58 2.52 0.01 0.03 TP-1 2 1.22 5.34 0.01 0.05 0.58 2.52 0.01 0.03 TP-13 1.22 5.34 0.01 0.05 0.58 2.52 0.01 0.03 TP-1 4 1.87 8.18 0.02 0.08 0.88 3.87 0.01 0.04 TP-1 5 1.87 8.18 0.02 0.08 0.88 3.87 0.01 0.04 TP-16 1.87 8.18 0.02 0.08 0.88 3.87 0.01 0.04 TP-1 7 1.87 8.18 0.02 0.08 0.88 3.87 0.01 0.04 TP-18 1.87 8.18 0.02 0.08 0.88 3.87 0.01 0.04 TP19 0.93 4.09 0.01 0.04 0.44 1.94 0.00 0.02 TP20 0.93 4.09 0.01 0.04 0.44 1.94 0.00 0.02 TP21 0.93 4.09 0.01 0.04 0.44 1.94 0.00 0.02 TP22 0.93 4.09 0.01 0.04 0.44 1.94 0.00 0.02 TP26 0.93 4.09 0.01 0.04 0.44 1.94 0.00 0.02 TP27 0.93 4.09 0.01 0.04 0.44 1.94 0.00 0.02 TP28 0.93 4.09 0.01 0.04 0.44 1.94 0.00 0.02 TP29 0.93 4.09 0.01 0.04 0.44 1.94 0.00 0.02 TP30 0.93 4.09 0.01 0.04 0.44 1.94 0.00 0.02 TP31 0.62 2.73 0.01 0.03 0.30 1.29 0.00 0.01 TP32 0.62 2.73 b.ol 0.03 0.30 1.29 0.00 0.01 TP33 0.21 0.91 0.00 0.01 0.10 0.43 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 TP34 0.21 0.91 0.00 0.01 0.10 0.43 0.00 0.00 TP35 0.21 0.91 0.00 0.01 0.10 0.43 0.00 0.00 TP36 0.21 0.91 0.00 0.01 0.10 0.43 0.00 0.013 TP37 0.21 0.91 0.00 0.01 0.10. 0.43 0.00 0.00 TP38 0.21 0.91 0.00 0.01 0.10 0.43 0.(0 0.00 TP39 0.21 0.91 0.00 0.01 0.10 0.43 0.00 0.00 TP40 0.21 0.91 0.00 0.01 0.10 0.43 0.00 0.00 TP41 0.21 0.91 0.00 0.01 0.10 0.43 0.00 0.00 TP42 0.62 2.73 0.01 0.03 0.30 1.29 0.00 0.01 TP44 0.62 2.73 0.01 0.03 0.30 1.29 0.00 0.01 TP45 0.62 2.73 0.01 0.03 0.30 1.29 0.00 0.01 TP46 0.62 2.73 0.01 0.03 0.30 1.29 0.00 0.01 TP47 0.93 4.09 0.01 0.04 0.44 1.94 0.00 0.02 TP48 0.93 4.OT 0.01 0.04 0.44 1.94 0.00 0.02 TP49 0.93 4.09 0.01 0.04 0.44 1.94 0.00 0.02 TP50 0.93 4.09 0.01 0.04 0.44 1.94 0.00 0.02 TP54 0.93 4.09 0.01 0.04 0.44 1.94 0.00 0.02 TP55 0.93 4. 0.01 0.04 0.44 1.94 0.00 0.02 TP56 0.93 4.09 0 01 0.04 0.44 1.94 0.00 0.02 TP57 0.93 4.09 0.01 0.04 0.44 1.94 0.00 0.02

TPSS0.934.090.010.040.441.940.000.02TP590.622.730.010.030.301.290.000.01TP600.622.73-0.010.030.301.290.00TP610.210.910.000.010.100.430.000.00

TP62 0.21 0.91 0.00 0.01 0.10 0.43 0.U0 0.00 TP63 0.21 0.91 0.00 0.01 0.10 0.43 0.00 0.00 TP64 0.21 0.91 0.00 0.01 0.10 0.43 0.00 0.00 TP65 0.21 0.91 0.00 0.01 0.10 0.43 0.00 0.00 TPE56 0.21 0.91 0.00 0.01 0.10 0.43 0.00 6.00 TP67 0.21 0.91 0.00 0.01 0.10 0.43 0.00 0.00, TP68 0.21 0.91 0.00 0.01 0.10 0.43 0.00 0.00 TP69 0.21 0.91 0.00 0.01 0.10 0.43 0.00 0.00 TP70 0.62 2.73 0.01 0.03 0.30 1.29 0.00 0.01 TP73 0.62 2.73 0.01 0.03 0.30 1.29 0.00 0.01 TP74 0.62 2.73 0.01 0.03, 0.30 1.29 0.00 0.01 TP75 0.62 2.73 0.01 0.03 0.30 1.29 0.00 0.01 TP-76 1.22 5.47 0.01 0.05 0.58 2.59 0.01 0.03 TPT7 1.22 7.83 0.01 0.08 0.58 3.70 0.01 0.04 TP78 1.22 12.90 0.01 0.13 0.58 6.10 0.01 0.06 TP79 1.22 12.90 0.01 0.13 0.58 6.10 0.01 0.06 TP80 1.22 12.90 0.01 0.13 0.58 6.10 0.01 0.06 TP81 1.22 6.45 0.01 0.06 0.58 3.05 0.01 0.03 TP82 1.47 6.45 0.01 0.06 0.70 3.05 0.01 0.03 TP83 1.47 6.45 0.01 0.06 0.70 3.05 0.01 0.03 TP84 1.47 6.45 0.01 0.06 0.70 3.05 0.01 0.03 TP85 1.47 6.45 0.01 0.06 0.70 3.05 0.01 0.03 TP86 2.95 12.90 0.03 0.13 1.39 6.10 0.01 0.06 TP87 2.95 12.90 0.03 0.13 1.39 6.10 0.01 0.06 TP89 3.66 16.01 0.04 0.16 1.73 7.57 0.02 0.08 TP90 3.66 16.01 0.04 0.16 1.73 7.57 0.02 0.08 TP91 3.66 16.01 0.04 0.16 1.73 7.57 0.02 0.08 TP92 3.66 16.01 0.04 , 0.16 1.73 7.57 0.02 0.08 TP93 3.66 16.01 0.04 0.16 1.73 7.57 0.02 0.(8 $0 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00$ 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 $0 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00$ 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 $0 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00$ 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 $0 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00$ $0 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00$ 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00 0. 0.00 0.00 0.00 0.00 0. 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 $0 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00$ TOTALS 100.37 466.04 1.00 4.64 47.29 219.56 0.47 2.20

```
2. Emissions From TRANSFER POINTS (Condnued)
Source:
AP-42 Fifth Edibon
13.2.4 Aggregate Handling and Storage Piles
Emissions From Batch Drop
E = k'(0.0032) * [(U/5)Al .3y[(W2)111.41 = pounds/ton
Wherei PM PM-10
Particle Size Multiplier (dimensionless) 1 0.74 J@M
Mpan VVinef Arm
Material Moisture Content
Assumptions:
k - Particle size multiplier
For PM (< or equal to 30 \text{ um}) k = 0.74
For PM-i 0 (< or equal to I Oum) k = 0.35
For PM E(M) = 0.0062125 * [I/((M/2)Al .4)] = pounds/ton
For PM-10 E(M) = 0.0029383 [11((M/2)AJ.4)] = poundsiton
For lb/hr [lb/tonj*[ton/hr] = [lb/hr]
For Tons/year [lb/lonj'(ton/yrj*[ton/2000lbj = [ton/yrl
```

I DO NOT enter data on this page 3. Emissions From MND EROSION OF STOCKPILES stockpile PM PM-10 ID No Uncontrolled oEn t@,o 1:1 Uncontrolled Controlled lb/hr TPY lb/hr TPY lb/hr TPY lb/hr TPY OS-1 1.97 8.64 0.02 0.09 0.93 4.06 0.01 0.04 OS-2 1.74 7.61 0.02 0.08 0.82 3.58 0.01 0.04 OS-3 1.74 7.61 0.02 0.08 0.82 3.58 0.01 0.04 OS-4 2.26 9.88 0.02 0.10 1.06 4.65 0.01 0.05 OS-5 0.90 3.92 0.01 0.04 0.42 1.84 0.00 0.02 OS-7 0.90 3.92 0.01 0.04 0.42 1.84 0.00 0.02 $0 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00$ $0 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00$ $0 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00$.00 0.00 0.00 0.00 0.00 0.1D0 0.00 0.00 0 DI 0.00 0.00 0.00 0.00 0.00 I 0.00 I 0.00 0.00 .@@l 9.50 41.62 6.1UT-U-4211 4.47 1 19.56 1 Source: Air Po#udon Engineeting Manual Storage Pile Wind Erosion (Active Storage) E = 1.7 - [s/1.5j - [(365-p)1235j*[fl1 51 = (lbidaylacre)]Where: S = silt content of material p = number of days with 70.01 inch of precipitation per year f percentage of time that the unobstructed wind speed exceeds 12 mph at the mean pile height For PM E(s) = 1.3374,941 * s = lb/day/acreFor PM-10 E(s) = 0.6286222 * s = lb/day/acreFor lb[hr [lb/day/acrej'[day/24hrj'[base area of pile (acres)] lb/hr For Ton/yr (lb/day/acrel*[365day/yrl'(Ton/20001b]*[base area of pile (acres)] Tonlyr

```
I DO NOT enter data on this page
4. Emissions From UNPAVED HAULROADS
item PM PM-10
No. Uncontrolled Contro(led Uncontrolled Controlled
lb/hr TPY lb/hr TPY lb/hr TPY lb/hr TPY
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
.00 0.00 0.00 22@j 0.00 0.
.00 0.00 0.00 0.00 11 0.00 I 0.00 I 0.00 I 0.
Source:
AP-42 Fifth Edffion
13.2.2 Unpaved Roads
Emission Estimate For Unpaved Haulroads
E = k'(5.9) - (s/1 2) - (S/30)'(W/3)110.7 - (w/4)A0.5*((365-p)/365) lb Vehicle Mile
Traveled (VMT)
Where:
k = particle size multiplier
S = silt content of road surface material (%)
S = Mean vehicle speed (mph)
W Mean vehicle weight (tons)
W mean number of wheels per vehicle
p number of days per year with precipitation >0.01 inch -----
Assumptions:
k - Particle size multiplier
For PM (< or equal to 30 \text{um}) k = 0.80
For PM-IO (< or equal to IOum) k = 0.36
For PM E(S,W,w)= 1.1207306*(S/30)'[(WI3)A0.71*[(w/4)A0.51=lb/VMT
For PM-10 E(S,W,w)= 0.5043288 '(S/30) * f(W/3)A0.7]'[(w/4)A0.5] = lb/VMT
For lb/hr [lb/VMT] * [VMT/trip] ' [Tdps/Hourl = lb/hr
For Tons/yr flhWT] * [VMTttdpi * (Trips/Year] * (Ton/20001b] = Tons/year
```

DO NOT enter data on this page 5. Emissions From INDUSTRIAL PAVED HAULROADS Item PM PM-10 No Uncontrolled Ent@r. d @11@e LJncontrolled Controlfed lb/hr TPY lb/hr TPY lb/hr TPY lb/hr TPY $2 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00$ $4 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00$ $0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0\ 00\ 0.00\ 0.00$ 0.00 0.00 0 ,Do 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 .@TAL@S 0.00 0.2E@@F---UZGT- 0.00 0.9q@M Source: AP-42 83'Edffion 11.2.6 INDUSTRIAL PAVED ROADS Emission Estimate For Paved Haulroads E = 0.077 * I ' [4/nj * [s/1 0] ' [Ul 0001 * [W/31A 0.7 = lb / Vehicle Mile Tr aveled (VMT) Where: I Industrial augmentation factor (dimensionless) n number of traffic lanes S surface material silt content (%) L surface dust loading, (lb/mile) W average vehicle weight, (ton) For PM E(W) = 0.61446 [W/3]AO.7 = (IbNMT)For PM-10 E(W) = 0.2887962 [(W/3)110.7] = (lb/VMT)For lb/hr [lb/VM11 ' [VMT/trip] ' [Trips/Hour] = lb/hr For Tons/yr [lb/VMT] ' IVMT/trip] ' [Trips/Year] ' [Ton/20001b] Tons/year

```
I DO NOT enter data on this page
5. Emissions From INDUSTRIAL PAVED HAULROADS
ltern PM PM-10
No Uncontrolled I c @roll@ Uncontrolled I Controlled
@j lb/hr I TPY I lb/hr I TPY 11 lb/hr I TPY I lb/hr I TPY
4 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 I 0.00 j 0.00 0.00 I 0.(O I 0.
Source:
AP-42 83'Edffion
11.2.6 INDUSTRIAL PAVED ROADS
Emission Estimate For Paved Haulroads
E = 0.077 * I ' [4/nj ' [s/101 * [U1000] * [W/3]Ao .7 = 1b Vehicle Mile Travel
ed (VMT)
Where:
I = Industrial augmentation factor (dimensionless)
n = number of traffic lanes
S = surface material silt content
L = surface dust loading, (lb/mile)
W = average vehicle weight, (ton)
For PM E(W) = 0,61446 (W/31-0.7 = (lb/VMT)
For PM-10 E(W) = 0.2887962 [(W/3)-0.71 = (IbNMT)]
For lb/hr [lb/VMT] ' [VMT/trip] * [Trips/Hour] = lb/hr
For Tons/yr [lb/VMTj ' [VMT/trip] * [Trips/Year] ' [Ton/20001b] = Tonslyear
```

Тоо

olf Or

- -17-тоо

@7e .12

IZ sa: @.s

17

ted C md mma@=

ut eaulb.,

AI

A,=r7j@zg: to -perfor=_4 st t@st,

.77-

NR 3w

TeC@MCIC91*Z, LLC

ZCO au@,ine=,a Cantef- Cr-,,Ie, SQ@U M_@' (-,_41 941-3076 FkX Technical Data Sheet Product: FTH-100 RCRA Metals Metals Result EPA MethoA Arsenic <1.0 208.2 Barium <1.0 200.7 Cadmium <0.05 200.7 chromium <1.0 200.7 Lead 0.22 239.2 Mercury <0.002 245.1 Selenium <0.5 270.2 Silver <2.0 200.7 An data reported in mg/i

Pq(1-4 Egg'd

Technical Data Sheet Product: FTH-100 Semi-Volatfic Organics by MetLwd 8270 CAS# CoMound Concentration (ugXg) 62-75-9 N.NitvscdjnwtbLyjxrmin 8,000 u 110-36-1 Pyxidinc 8,000 u 97-63-2 Ethyl wdd=YIztC 8,000 u 123-63-7 Paraldehydc 8,000 u 109-06-8 2-Picalinc 16,000 u 10595-95-6 N-itrosomethylehylurine 8,000 u 66-27-3 Mcthyl methancsulfbnat@ 8,000 u 108-95-12 Phcaol 8,000 u 55-18-5 N-N-itrosodiethylmninc 8,000 u 62-50-5 Ethyl metbanesulfb=re 8,000 u 62-53-3 Aniline 8,000 LT 76-4)1-7 Pcnfnrhlaroctiume 8,000 u 111-44-4 bis (2-C3ilomtbyl) erher 16,000 u 95-57-8 2-Chlorophenal 8,000 u 541-73-1 1,3-Dichloroben=c 8.000 u 100-44-7 Be=yl cbloride 8,000 u 106-46-7 1,4@Dichlorob=ene 8,000 u 100-51-6 Benzy] alcohol 8,000 Ii 9S-50-1 1,2-Dich1=bcz=e 8,000 u 95-48-7 2-Mathylphcnot 8,000 u 39638-3.2-9 bis (2-Chloroisopropyl) ed= 8,000 u 108-39-4 3-Methylphemi 8,000 Ti 106-44-5. 4-Methylpl=ol 8,000 u 930-55-2 N-NitrosaMolidinc 8,000 u 59-89-2 N-Nitrosomorpholine 8,000 u 98-86-2 Acetophcnone 8,000 u 621-64-7 N-Nitroso-Di-n-pMylarrdne 8,000 u 636-21-5 o-Toluidine hy*ochloride 8,000 T-T 67-72-1 H=Whl=atb= 81000 u 98-95-3 Nitrob=cne 8,000 u

a I a/voo -d ZSD-l 'MLZ:ai

10:27am Prow- T-052 P-005/016 F-064

```
00or's clqa-l
000's vwjqWdvj=p.)-Z
000,91 2104MBOSI 1-99-OZI
000'gi t-W,96
ri DOO'91 10=qdwOTq*!J.L-q,vz Z-90-88
Is
000 M=dojok*@=*H V-Lt-LL
ODO'S ==wjqwojtjam42.L-glCrj Z-06-11C9
000's I E-@6-56
ODO'S 0--61-06
fl ooo's dvulkpW-Z 9--Lg-16
fl 000"g E-09-901
ri DooIg U1042S L-69-*6
?Ulr= lj(=qa-cl E-og-gol
ooo's rpm
ODO"B louagdjAWm-E-ozoM-t L-09-69
 *umutj.(jnq-xH"s,,mjX-X E-91-M
OWS
0001,91 L-L"6
fl 000fS 9-19-Lg
ri ooo"s 2=.TeTnqcuolq=xaR E-89-LE
ri 000,R L-IL-9981
ri MO's 9-60-ZZI
D00'S
00019T io=qdoomta-q'z a-.c9-LS
fl ooo"g ma!, cowpL-)-17 S-L"OT
ri ooo's *=pnpdrg C-OZ-16
fl ooo's z=zmq=jqop.L-VIZIj I-znzi
fl ooo's ioaaqdommia-v'z Z-ER-OZI
000's ;;urq= (4-wrpo=jqD-Z) slq 1-16-111
066 PM OMM2,19 0-98-99
n 00018 2ptmm TMWU E-L."6
11 ooo"g t-OL-SOT
.n ooo's 6-L5@-;oi
ri 000's 9-SL-gg
ri C)00's 1-65-8L
fl ODO's t,-SL-001
puno=03 #SV0
OLZS POTDQJN Xq GOT.M310 -1jRVIOA-!T=S
00 T -RL-4 :10TIPC)jcl
```

Page 3 Product: FTH-1 00 Semi-Volatfle Organicsby Methad 8270 CAS4 Comygund Conceqtra@ @mu 634-66-2 I,2,3,4-Tatrachloroba== 8,000 li 88-74-4 2-Niuvauffim A,000 u 130-15-4 1,4-N;&p&hcquiv= 16,000 u IOG-25-4 1,4-Dinitmbw=e 16,000 u 131-11-3 JDimethyl te 8,000 iu 208-96-8 Ac=2phthylenE 8,000 u 99-09-2 3-Nitvaniline 16,000 u 83-3.2-9 Acen*thene 8,000 u 51-29-5 2,4-Dinitmphenol 32,000 u 100-02-7 4-Ni=phenol 8,000 u 132-64-9 Dil=zofur= 8,000 u 121-14-2 2,4-Dinitzotolucta 8,000 u 608-93-5 pentwwazQba== 8,000 u 134-32-7 2-Naphthylmine 16,000 u 606-20-2 2,6-Diaitrotolucac 8,000 u 134-32-7 1 -NaphthyLumine 16,000 u 58-90-2 2,.3,4,5-Tctachlm-uph=l 16,000 u "6-2 Diethylphth2late 8,000 u 297-97.2 Zinaphos 8,000 u 7005-72-3 4-Chlorvpheqyl-ph=ylcthcr 8,000 Ti 86-73-7 Flucn= 8,000 Ti 100-01-6 4-Nitoanilinc 16,000 u 99-55-8 5-Nlft-o-@taluidine 16,000 u 534-52-1 4,6-Dinitro-2-methylphewl .24,000 u 36-30-6 N-ANitmaodiphmyLlmite (1) 8,000 u 122-39-4 Diph=yhmine 8,000 u 99-35.4 1,3,5-Trinitrobem7enc 16,000 u 122-66-7 1,2-Diphenylhydrmdne 8,000 u

M-L

р	C3	`04			
ta my	a /				
00	D				
CI C))				
HZ 0 tc C Vt	A Di)				

Technical Data Sheet Product: FTH-1 00 TCLP Metals Metals Rasult - UMft\$ EPA Method Arsenic 0.046 5.0 206.2 Barium -C0.50 100 208.1 Cadmium <0.005 1.0 213.2 Chrurnium <0.05 5.0 218.1 Lead <0.05 5.0 239.1 Memury <0.001 U 245.1 Selenium 0.01 1.0 270.2 Silver <0.005 5.0 272.1 All data reported in ppm

vgo-i BID/sca-4 zs[@-j gooz-9 Z-gily

Technical Data Sheet Product: FTH-100 Calorific Content by ASW D-240

:[eat Result Caloriffc Content 8,826 BTUAb Reported on an as is basis

0/3GO, dzga-i

Pace I of 6 ACCRETION TECHNOLOGIES MATERIALSAFM DATA SHEET Plroduct Name: FrH-100 Preparation date: Sll 6/00 SECTION I C14EMICAL PRODUCT AND COMPANY lt3ENTIFICATION PRODUCT NAME: FrH-1 00 MSDS REVISION 001 SYNONYMS: None DISTRIBUTF-0 BY. Accretion Technologies 300 Busbiess Center Drive, Suite 302 Ptnsburgh, PA 15205 PHONE NUMBER: (304) 552-2919 rION 2 - COMPOSITION GNFORMTION ON INGRMIF-NTS Compone % CAS No. Exposure Limits Organic resin.3 30-60 Propriet2ry Not wst2blizhad Sur-factant blend 1-io Propeietary Not established Guar gum 1-10 9000-30-0 Not established Fany alcohollfatty acid 1-10 Proprictziry Not established Water 30-60 77V-1 S-E Not eszabilahed -SECTION 3 - HAZARDS IDE "FICATION EMERGENCY OVERVIEW Product is a brown liquid wiih a sright, bland odor. The product rnay cause e ve irritation. Avoid contac-t with skin, eyes and clothing. Wear protective goj ggles and gloves when handling thLs product. Wash thoroughly after handling. POTENTIAL HEALTH EFFECTS EYES; Can cause irrita-tion. Section 3 cominued on next pago 730-1 310/alo-d

ACCRETION TECHNOLOGIES Paae 2 of 6 MATERIAL SAFETY DATA SHEET Product Name: FTH-100 Preoaration date: 811 6100 SECTION 3 - HAZARDS IDENTIFICATION (cominued) SKIN: Prolonged or repeated contact may slight irritation, Persons whh pre-existing skin condidons are particulariy susceptible. INGESTION (swallowing): May cause irritation of the mouth and throat. nausea, vomiting and diarrhea. INHALATION (breathing): Spray or mist may cause irritation to the nose, throat and fungs. Persons wit h pre-existing lung disorders are partleutariy susceptible. CHRONIC EFFECTSICARCINOGENICITY: This product (or component) Is not listed in [ARC Monographs, the NTP Seventh Armual Report of the ACGIH TLVs as a carcinogen or pgtentia(carcinogen. OSHA doer. not regulate it as a carcinogen. F@7 SECTION 4 -.FIRST AID MLASURES EYE CONTACT: Rush with large amounts of water for Q-t least 15 minutes, lifting upper and lower lids occasionally. Got rnedical attention. SKIN CONTACT: Wash exposed area with soap and wa-ter. Launder contamina-ted clathirig before rouse. INGES-1710N (swallowing): Immediately drink two large glasses of water. Call a physician. Do NOT induc е vomiting urdess' instructed to do so by physician. Never give anything by mouth to an unconscious person. INHAL-ATION (breathing): If affected, move to freeh air.

ACCRETION TECHNOLOGIES P2qL- 3 Of 6 MATERLAL SAFETY DATA SHEE7 Product Name: IFTH-100 Preparation date: 8/@6100 SECTION 5 - PRE FIG@MNG MEASURES E:@.@ -F-1-ASH POINT: -500- F (100- C) FLASH POINT METHOD: PMCC UPPER EXPLOSION LIMIT: Unavailabic LOWER EXPLOSION UMIT: Unavailable AUTOIGNITION TEMPERATURE: Unavailable SENSITIVITY/SPARI(5: Unknawn SEINSITiVITY/STATIC ELECTRICITY: Unknown EXTINGUISHING MEDIA: Dry chemlcal, water fog, and regular foam ;riRE AND EXPLOSION HAZARDS: None known. Product contains a large amount of Yvater, and would not norinally bum. FIRE-FIGHTING EQUIPMENT; Keep personno-I reMoved from and upwirid. Wear full protective clothing and self-contained breathing apparat-us with full face-piece-L SECTION 6 - ACCIDMTAL REI PA E MEASURES Flersons not wearing protective equipment shakild be excluded from the area of the spill until clean up has been completed. Dike area of spill to prevent spreading and pump liquid to salvage tank. Absorb remaining liquid on vermiculite, tioor absorberrt or other 2bsorbant material and shovel irito contairiers. SECTION 7 - HANDUNG AND STORAGE HANOLING: Avcid contact with skin, eyes and clothing- Wash -thoroughly after handling. STORAGE: Keep In closed or cuvered containers vyhen nat in use. Store in cool dry plac with sdGquatp. ventilabon. 731-i CO/ZIO'd

Paga 4 of 6 ACCRETION TECHNOLOGIES MATERIAL SAFETY DATA SHEET Product Name: FrH-100 Preparation date: 8/1 6100 SECTION 8 - EXPOSURE CONTROLSMEFISONAL PROTECTION **RESPIRATORY PROTECTION:** Not required under norrnal conditions. SKIN PROTECTION: Wear protzotive gloves such as Neoprene or Buna-N. EYE PROTECTION: Chemical spla3h gaggles in compliance with OSHA regulailons are advised. OTHER PROTECTION: Normal work clothing covering arms and legs are recommended. ENCIINEERING CONTROLS: Provide, 5ufficient ventilation to mairrlzin exposure below level of overexposu re, SE"ON 9 @- PHYSICAL AND CHEMICAL PROPEFrrIES APPEARANCE: Brown liquid @ 58' F (20' C) COOFi: Slight bland SPECIFIC GRAVITY: >0.998 VAPOR PRESSURE (mm Hg): 17.5 @ 68'3 F (20" C) VAPOR DENSAY (Air = 1). Ughter than air iNITIAL 1301UNG POINT: 21 2" F (1 00" C) EVAPORATION RATE: <1 (Ethyl E-ther = 1)SOLUBIUTY in WATER: Dispersible VOLATILE Unavailable рН: - 5-7 pH METHOD: Unavailable

D/E Lo'd Zia-I uEWOL GOOZ-9Z-Jny

ACCRETION TECHNOLOGIES pane 5 of 6 MATEFIIAL SAFETY DATA SHEET Product Name; FTH-100 Preparation date: Bil 6/00 F_ sr:CTION io - STABIUTY AND IREACTIVTTY STABILITY (conditions to avoid): Stable under normal conditions. INCOMPATIBILMES (materials to avoitl): Avoid contact with svong oxidizing agents and strong mineral acids. DECOMPOSITION. Not available. HAZARDOUS POLYMEFILZATION: Can not occur. SECTION 11 - TOXICOLOGICALINFORMATION No data available. SECTION 12 - ECOLOGICAL INFORMTION In an effort to demonstrate the safety of the product when used as a dust control agerit, 82 grams of product were mixed with 1,890 grams of aggregate, typical af dirt roads. The rnixture was allowed to dry, then mbced with water and allowed to stand. The water was then tested in aquatic toxicit V studies, and found to be non-toxic to Dapi7nia magna. SECNON 13 - DISPOSAL CONSIDERATIONS Incineration is -the recommended disposal method for all chemical wastes. Material caftected on absorb2nt materlal may be deposited In a landfill in accordance with all applicable local. state and federal regulatlans. This product, if disposed of, is not considered a hazardous waste under curren RCRA definidons. SECTION 14 - TRANSPORT INFORMATION yga-I COMO d 230-i gooz-gz-any

ACCRETION TECHNOLOGIES page 6 of 6 MATERIAL SAFETY DATA SHEET Product Name: FTH-100 Preparation date: 811t/00 Not regulated under current DOT, IMO, or ICAO regulations. SECTION 15 - RMULATORY INFORMATION TSCA INFORMATION; All componerrts in this product are in compliance with TSCA Inventory requirements. SARA 31 3 INFORMATION: SARA requires subrnission of annual reports of release of toxic chomir-als tha appear in 40 CFR 372. This information must be included in all MSDS that are copied and distributad for this matarial. Cornponents present in thi3 product at a level that could requirEt reporting u rider the statute are: None SECTICN 16 - DTHF-R INFORMATION HAZARD RATING: HEALTH 1 0 - LEAST FiRE 1 1 - SUGHT REACTIVITY 0 2 - MODEFLATE OTHER - 3 - HIGH 4 – EXTREME HAZARD RATING METHOD: NFPA REASON FOR REVISION: Updated flash point information (Section 5). 7-me product infornu-don contained herein is beueved to 1,%-- accurate as of t he date of The Matariai Safety Data SheeL and Es pr9wided without wwmnty, expresGW or Implied. as w the resuf t af use af this Informagan or the ptoduct to which it relatac. Recliakh-n assumes all respons ibility for the u--* of this itifomuMan and tho u= (alone or In camUnation with any other product), swrage or disposW of the product, inctuding any ru*ultant Msijiml injury or property daniage. ""ENE) OF REP(RT*"-&

710-@ --WQJ@ , ImSe"Ol GOOZ-3"Arly

Technical Data Sheet Product: FTH- I 00 Volatfle Organics by Method 8240 gAs# Comppund Concentmticm (uzT%i) 74-87-3 chlcffumcthimc 23 1 74-83-9 26' u 75-01-4 Vinyl chlmide 53 u 75-00-3 53 'U 75-09-2 Mathylene chloride 1,700 BE 67-64-1 Acabone 2,800 BE 75-15-0 Carbun dbulfide 22 1 75-33-4 lj-Dichloroedw= 26 u 75-34-3 1,1-DicWorocdw= 26 Ti 540-59-0 1,2-Di anp (total) 26 u 67-66-3 C331mmfbrm 27 107-06-2 1,2-Dichla=thmc 26 u 7S-93-3 2-Butanone 830 13 71-55-6 I,1,1-TriChl0roCtb= 26 u 56-23-5 Cafbon retwhLodde 26 u 108-05-4 Vinyl acebite 53 u 75-27-4 Bromodichloramethane 26 u 78-87-5 1,2-Dichlmmpmpa= 26 u 10061-01-5 cis-1,3-Dichlaropropane 26 Ti 79-01-6 Tricblomc6anv 26 u 12448-1 Di-brorno efl=C 26 u 79-00-5 1, I, 2-Tficbloroe0mne 26 u 71-43-2 Benzme ISO 10061-02-6 Trans-1,3-Di 26 u 110-75-8 2-Chloroethylvinylether 53 u 75-25.2 l3r=,afbrm 53 u 108-10-1 4-Methyl-2-Pentanone zso 591-78-6 2-Hcxmone 79 u 1.27-18-4 Tetrachloructhace 26 u 79-34-5 1,12.2-Tetracblamethane 53 Ti

FIOMU'd ZSB-i - -=AA .

Page 2 Product: FIH-100 Volatile Organicsby mcthod 8240 CASA Compoind Concentration (Ug/K@j 10848-3 TOIUCac 1,300 E 109-90-7 7w-nc 26 u 100-41-4 BthyMcaz=C 360 100-42-5 Sryr=c 63 1330--20-7 Total xyl=cs 340 74-88-4 Iod=,dffi;me 53 u 107-02-8 AcroLein 640 u 107-13-1 Acrylouftrile 26 T.T 75-69-4 TricWomflumomedme 26 u 107-05-1 3-0doropropm 79 u 7&13-1 i,1,2--rrkhIom-1,2.2-trj 53 u 354-59-5 1, 1. I -Trichloro-2,2,7-Adf luommedia= 53 u 74-95-3 Mfomomedme 53 u 4170-30-3 Cxo=aIdehydc 530 u 106-93-4 1,2-Dft=acthane 26 u 630-20-6 1,1,1,2-Tch=hjorocthane 26 u 764-71-0 cis-1,4-@chloto-2-bu=e 79 u 96-18-4 1.2,3-Trichloropropane 79 u 764-71-0 tr=s-1.4-Dichloro-2-butme 79 u 9&18-4 EthylwofhaeTylate 53 u 96-12-8 1,2-Dtbromo-3-chlcroj=p:ane 53 u Ti- Indica= o=po=d wu auahr=d but not dctwtc& The zamplc qu=titldon 11=t Inust bC ew,Lcdcd for daution ad for; -r -, mow= j- Lidicam an csdmzted vah= This ft is uscd cithrr wb= CW=uttift IL COCC="tion fQr =wivcly Wadi6ed mWwsds whc= a 1: I impoe is amuned, or whcn the mass spectral dam incli-antad dw presc= of a tha mects the idendfitadoa r, i, r a but ffin rwult is less than the ample q=ndmfion linxit bux sr=tcr thm tao. B- This flag is uwd when dn =alyte Is found in die usochmed blank as well as i n the le. It indicatm pagsibldprobablc blmk cofiturkmdon and www the datm u= to ts6 aPpropr iALactim E- 7bis flag ideaffies compounds whwje con==2dous ==W the c.2Ebr,,di= range of tfie G4--MS IrLsuumcat for tbc spcdlr. aoalysis.

Technical Data Sheet Product: FTH-100 E-xtractable organic Kalldes in Soil by EPA 6M4-8"0S je;5t Detection Limft Rewft EOH in soil 70m@Vkg <70mgtkg Reported on dry weight basis

PSO-1 II(VOID'd Z30-1 Boaz-92-2nv

Sn,o Dzp jo as= mv!@ddw zrq Ca ;Mm lqcP 010 =Mm P= WTcM=CM= @ICMR VMRO'dPMM" SMEMPU! 11,21 alp uj VP *mlq pcqvpom *T V! PI'MJ 5! m4m alp W" STU -9 =Lp =4=fi Mq lpn goq . 4WWD 21d,= og mqj smi q lMr-u M ;nq 9MI I"P Plld" UO Wo"Lld VLP PaMT -onrL mqm j2tpm p=n sl Beg mi % x)j pua uol .Tnlt .p 3DJ pw== aq vw= lw QVU PO pu M pwArw a& poodm= Im"IM -ri q WFMP=b 2]da= 000,001> 000400T> n aualkd (p,@-E'Z'J) OU2p'aj ri 000,001> 000'001> ==CMU 0001001> ,=qTw-mnLj 000'DOT> o==npm (0) M=q-la DDOLDOI> 2=gf..UD n 000,00> C=Warjon:g (31) O=ff awg-md (ilqlg) cz=,a OWOOI> 0001001> (q) ==ari ODO"001> (e) ==la a ooo"ool> (T-) czaaa n 000,001> ===Uqmv fl 000,001> a=TAq;qdm=V fl 00orDolt.. mmqlqdm=V M51-703 pano=o:) pOtD2X Vga 4 SUOq=30IPXH042MOJV XWI:)"U'@JOCI 001-Hla 43UPO-la laa,qs 'Pr-(I I=raq:)ajL

Aus-ZS-2000 '"lam Froor T-05Z P-0191019 F-DEA