

Dominion
File
10/14/83

Memorandum To : Director, Division of Compliance

From : Director, Region VI

Subject : Fugitive Emissions from Coal Storage Piles at Hampton Roads Terminals

Reference : (a) Director, Region VI memo to the Director, Division of Compliance, dated December 27, 1983, Subject; New Coal Terminals in the Hampton Roads Area

Enclosures : (1) Discussion on Fugitive Emissions from Coal Storage Piles

(2) Calculations to Determine Fugitive Emissions from The Massey Coal Storage Pile based on Observed Hi-Vol concentrations and C Stability conditions

(3) Revision to Enclosure (2) using D Stability for the Observation on May 15, 1983

Date : September 22, 1983

Serial No. : 0503-83

The State Air Pollution Control Board issued the first of several coal terminal permits to the Massey Coal Terminal Corporation in September of 1980. Since that time five (5) additional applications for coal terminals have been received by Region VI. Of the five (5) applications four (4) permits have been issued, two (2) of which were subsequently cancelled by the applicant, and one is still being processed.

During this period EPA modified the formulae for estimating fugitive emissions for coal dumping and transferring operations. In addition, Region VI recommended, and the Richmond staff concurred, that the formula used for estimating fugitive emissions from coal storage piles in the first three permits should be replaced by a more appropriate formula. The rationale for this recommendation is contained in Enclosure (1). (Note: At that time EPA recognized the existence of several formulae for storage piles, but did not specify any particular one as being representative of coal storage piles.)

As the result of these changes and revisions, the estimated actual emissions, as well as the allowed emissions, for each coal facility issued a permit during that period were based on different emission factors. In order to rectify this inconsistency Region VI recommended in Reference (a) that certain revisions be made to the permits issued to Massey, Dominion and Higgerson & Buchanan in order to bring them all in line with the same basic emission estimates.

However, before Reference (a) was acted on EPA published Supplement 14 to AP-42 (effective May, 1983 and received on August 22, 1983), which further clouded the issue of fugitive emissions for coal storage piles. Section 8-24 of Supplement 14 recommended the formula $E=1.6U \frac{\text{lbs}}{\text{hr/acre}}$ for estimating fugitive

Director, Division of Compliance
September 22, 1983
Page 2.

emissions from coal storage piles at Western surface mines. A modification of this formula was the one recommended by Region VI and subsequently used by Patrick Coal Terminal. The proposed Virginia Port Authority terminal used the formula as is ($E=1.6U$ lbs acre/hr). However, Supplement 14 recommends that this

formula only be used for Western surface coal mines and in Section 11.2 recommends that the formula $E=1.7 (S/1.5)(365 - p/235)(f/15)$ lbs/acre-day be used for estimating emissions from other active storage piles. The latter formula was developed from tests on sand and gravel piles and is a general formula to be used for storage piles of various types of aggregate. As is indicated on page 11.2.3-5 of AP-42 "worse case emissions from storage pile areas occur under dry windy conditions". This fact has been borne out by numerous on-the-spot observations at Massey Coal Terminal. However, specific wind data is not a factor in the latter formula and use of the formula will result in the same emissions on a calm day as on a windy day, all other factors being equal. Therefore, Region VI believes that the formula $E=1.7 (S/1.5)(365 - p/235)(f/15)$ should not be used for estimating short term emissions from coal storage piles.

In an attempt to get a better idea on emissions from a modern coal terminal, and specifically from coal storage piles, Region VI set up a Hi-Vol monitor on the roof of a maintenance building in the public housing area adjacent to the Massey Coal Terminal in Newport News. This monitor was operated on the same days as the other TSP monitors in the system plus an additional observation was made between each regular six day cycle. Terminal activity and hourly wind data also were recorded. Prior liaison was established with the monitoring division in order that each filter paper would be subjected to a microscopic inspection to determine the degree of coal dust present. It also was determined that a more definitive figure on the amount of coal dust on the filter paper could be determined in the laboratory. This procedure was accomplished by incinerating a portion of the sample in order to determine the extent of the organics present and then subtracting from this figure the amount of organics not due to coal dust. It was decided that the amount of organics not due to coal dust could be approximated by analyzing the filter paper from the Hi-Vol monitor at the Virginia Schools which was only about 2.2 miles to the northeast. Since this laboratory analysis by incinerations was costly, it was decided to only analyze those observations which appeared to be more worthwhile (i.e., over 50% coal dust on filter paper, no rain, and wind out of the general direction of the coal terminal). Three dates were selected to be analyzed (May 15, June 27 and July 5) for the public housing monitor and two dates for the Virginia Schools monitor (May 30 and July 5). The average organic background on the Virginia Schools filter paper was determined to be .0235 gm for a 24 hour period. This figure of .0235 gm was subtracted from the total organics observed on the public housing monitor filter paper with the resultant organics assumed to be coal dust. The hourly wind was then analyzed to determine how long and at what velocity the wind was blowing from the terminal toward the Hi-Vol. Once this duration of time was established it was utilized to compute the volume of air taken in by the Hi-Vol during the same period of time. Using the weight of the coal dust on the paper and the volume of air taken in by the Hi-Vol during the time the wind was blowing in that direction the average downwind concentration of coal dust was calculated for the average wind during that period. An average downwind concentration was

Director, Division of Compliance
September 22, 1983
Page 3.

developed for each of the three days evaluated.

Once the average downwind concentration was determined, an overall emission rate could be estimated for the terminal as a whole by assuming the entire terminal to be a surface area source and using the Gaussian distribution formula. Daily observation of the terminal revealed that on the days in question, while the wind was blowing toward the monitor, there were no significant coal handling operations in progress and that the terminal emissions were primarily from the coal storage pile.

Enclosure (2) contains the calculations for the three days evaluated. The size of the Massey coal storage area is 30 acres and the outer extremities of the piles bear 230° T clockwise through 270° T. The center of the area is approximately 1,780 feet (542.9m) from the monitor. In accordance with the procedure outlined in Turner's Workbook (page 39) the coal pile was considered a square surface area source with each side equal to 348.4 meters. (30 acres = 121,406 M²; $\sqrt{121,406} = 348.4$.) A virtual point for a constructed source was determined to be 613.86M upwind at C stability. Note: for this evaluation a class C stability was assumed for all three days. Under these conditions and Turner's procedures the constructed source would be 1156.8 meters upwind from the monitor at ground level. At this point one could solve for the horizontal and vertical dispersion coefficients by using Figures 3-2 and 3-3 in Turner's Workbook or by utilizing the approximations in EPA Project Report No. 3311 which developed the formulae for emissions from Western Surface Mines. Enclosure (2) utilizes the latter approximations. (Note: Region VI worked it both ways and there's no significant difference.)

Once the horizontal and vertical dispersion coefficients have been determined the only unknown in the formula $C = Q / (\pi)(U)(6y)(6z)$ is the "Q". Therefore, since we know the concentration and wind on the days in question, it is an easy matter to solve for the emission rate (Q) on that day. Having calculated the estimated emission rate for each of the three days analyzed, Region VI then compared these rates to the emissions calculated using the various emission formulae. This comparison is included on the bottom of page five of Enclosure (2).

As noted in this comparison emission rates based on the formula $E = 1.7(S/1.5)(365 - p/235)(f/15)$ from Section 11.2 of AP-42 resulted in the same very low rate each day even though actual observations indicated considerable differences in the daily rates and much higher rates. The formula $E = 1.6U$ from Section 8.24 of AP-42 used with Western surface mine storage piles appeared to overestimate the rate while the Region VI modification of this formula $E = .8U$ appeared to underestimate the rate. On the other hand, the formula $E = 1.1U$ indicated good correlation with the observed rates.

As indicated earlier, the observed rates developed in Enclosure (2) were based on using C stability dispersion coefficients. More recently Region VI checked with National Weather Service concerning actual stability conditions on the days in question and learned that, while stability conditions were predominantly C on the June 27 and July 5, on May 15 the stability condition was D. Enclosure (3) recalculates the emission rate on May 15 based on D stability, the observed wind and the recorded Hi-Vol concentration. The change from C stability to D stability

Director, Division of Compliance
September 22, 1983
Page 4.

reduces the calculated emission rate from 39.8 gm/sec to 27.4 gm/sec. It also upsets the excellent correlation indicated in Enclosure (2) when all calculations were based on C stability. Using actual stability conditions as observed the best correlation now appears to be described by the formula $E=.9U$. (Ironically enough this is not too unlike the arbitrarily modified formula ($E=.8U$) previously used by Region VI.)

In summary, it appears to Region VI that the formula given in Section 11.2 of AP-42 for fugitive emissions from wind erosion of active storage piles is inappropriate for short duration periods (24 hours or less). In fact, on the same page in AP-42 where the formula is given there is statement to the effect that the worse case condition for storage pile emission is a dry windy day. Therefore, unless the wind is prominent in the emission formula, a worse case condition cannot be calculated by use of the formula $E=1.7 (S/1.5)(365 - p/235) (f/15)$. In section 8.24 of AP-42 the formula for emissions from Western surface mine coal storage pile uses wind as the primary factor, but warns that the formula should not be used for other type facilities or even different geographical locations. The validity of this warning is amply demonstrated in the comparison on page five of Enclosure (2) where the emissions estimated by using the formula $E=1.6U$ are approximately 50% in excess of the observed rates. However, using the Hampton Roads location with the type of coal normally exported from this port, and the methodology described in the report that developed the $E=1.6U$ formula, a more appropriate formula ($E=.9U$) was developed.

While it is realized that the use of only one monitor, coupled with approximations on distances and the many assumptions used in the evaluation, leave a lot to be desired insofar as a scientifically conducted emission test is concerned, it is never-the-less the opinion of Region VI that the formula $E=.9U$ 1bs hr/acre best describes the short term emissions from coal storage piles at terminals in the Hampton Roads area and its use for this purpose is hereby recommended.

Ramon P. Minx
Director, Region VI

John Salop
Acting

RPM/JS/LWH/cf

OCR

The following pages contain the Optical Character Recognition text of the preceding scanned images.

11fln To Di rc-ctor , Div i :Sion of iance

From Direcl-or, VI

Subject FugiLive Iiiii-ssions fi-oITi Coal Stur-age Piles at
HampLon Rclads Tc-riiiiri(ils

Refel-ence (a) Dii-@(_tor, Region VI in;_mo to the Director, Division
of Complianc_e, dated Deceil,ber 27, 1983, Subject;
New Coal Terii,itals in thc- Hampton Roads Area

Eticlosures (1) DiSCLISSiOfl on Fugitive Emissions from Coal
Storage Piles

(2) Calculations to Deterifline Fugitive Emissions from
The Massey Coal Storage Pile based on Obsei-ved Hi-
Vol concentrations atid C Stability conditions

(3) Revision to Enclosure (2) using D Stability for the
Observation on May 15, 1983

Date September 22, 1983

Set-ial No. 0503-83

The State Air Pollution Cotiti-ol Board issued the first of several coal
Lerminal perriiits to tfie Massey Coal Terminal Corporation in SepLember- of 1
980.

Since that tiFle five (5) additional applications for coal tei-minals have bee
n
i-eceived by Region VI. Of the five (5) applications four (4) peiii-iits have
been
issued, two (2) of which were subsequently cancelled by the applicant, aild on
e
is still being processed.

During this period EPA modified the formulae foi- estimating l'ugitive
emissions for coal dumping and transfet-ring operations. In addition, Region
VI
recommeiided, and the Richmond staff coticut-i-ed, that the formula used for e
stimat-
itig fugitive emissions from coal storage piles in the first three peri-nits s
hould
be replaced by a niore appropriate formula. The rationale for this reconinien
dation
is contained in Eiiclosure (1). (Note: At that tinie EPA recognized the exista
ice
of several fori,,iulae for storage piles, but did not specify any particular o
ne as
being representative of coal storage piles.)

As the i-esult of these changes aild i-evisions, the estimated actual emission
s,
as @-,,ell as the allowed emissions, foi- each coal faCility iSSLied a pel-ITl
it during
tiait period were based on diffet-ent eiiiission factors. In order to i-ectif
y this
inconsistency Region VI recomiiended in Reference (a) that cet-tain revisions
be
made to the permits issued to Massey, Dominion and Higgerson & Buchanan in orde
r
to bring them all in line with the sanie basic emission estimates.

However, before Reference (a) was acted on EPA published Suppletflent 14
to AP-42 (effective May, 1983 and received on August 22, 1983), which fui-ther

clouded the issue of fugitive emissions for coal storage piles. Section 8-24 of Supplement 14 recommended the formula $E=1.6U -1-b-s$ for estimating fugitive emissions in $\text{kg}/\text{hr}/\text{acre}$.

D i t --c:r i @S i on uf C,
C
'.)er 12 19(-)3
P,j,,je 2 .

Pilli. ss i oiis f rorn coal s tc,ra ge pi I es a t I'st,s te rri s u r-f a ce
mi nes A modification of

tiis foriiula was the one rc-(@cm:-Iiended '--y 12Pqi,.)n VI arid subsequent
ly used by

Patrick Coal Tlf@rminal The Pro-)osed Vir@linia Pro-t. Authority tGrfrninal u,
,ed the

for.T.ijla .3s is (E--1.6U I bs Ho@,,,c@er, @u,-pll(--,ment 14 recommends that
this

lic re/hr) .

fot-inula only he u7,ed fot- '@4estern sur'lace t-(,dl mines and in Spction 11
.2 recoii,;iends

that the forinula E--1.7 (S/1.5)(365 - p/21315)(f/15) lbs/acre-day bp- used fo
r

estimatir-ig eiiiissions fiom o'Lher active :-lter-L-ge piles. The latter for
[nula "'Jas

developed from tests on sand and gravel piles aiid is a yeneral forinula to be

used for storage piles of various types of aysggregate. As is itidicated on pag
e

11.2.3-5 of AP-42 "worse case emissioris from s'Loi-age pile areas occur under

dry windy conditions". This fact lhas been borne out by nuinerous on-the-spot

observationis at Massey Coal Terminal. However, specific wind data is not a
factor in the latter formula and use of the formula will result in the same
emissions on a calm day as on a windy day, all other factors being eqtjal.

Therefore, Region VI believes that the foi-iriula E=1.7 (S/1.5)(365 - p/235)(f
/15)

should not be used for estimating short term c.-nissions from coal storage pil
es.

In an attempt to get a better idea on eiiiissions from a modet-n coal terrnina
l,

and spc-cifically from coal storage piles, Reyion VI set up a Hi-Vol inonitor
on

the roof of a maintenance bLjildirig in ttie public housing area adjacent to t
he

Massey Coal Terminal in Newport News. This monitor was operated on the same

days as the other TSP monitors in the system plus an additional observation was

made between each regular six day cycle. Terminal activity and hourly wind data

also were recorded. Prior liaison was established with the monitoring division

in order that each filter paper would be subjected to a microscopic inspection to

determine the degree of coal dust present. It also was determined that a more

definitive figure on the amount of coal dust on the filter paper could be determined

in the laboratory. This procedure was accomplished by incinerating a

portion of the sample in order to determine the extent of the organics present

and then subtracting from this figure the amount of organics not due to coal dust.

It was decided that the amount of organics not due to coal dust could be approx-

imated by analyzing the filter paper from the Hi-Vol monitor at the Virginia

Schools which was only about 2.2 miles to the northeast. Since this laboratory

analysis by incinerations was costly, it was decided to only analyze those

observations which appeared to be more worthwhile (i.e., over 50% coal dust on

filter paper, no rain, and wind out of the general direction of the coal terminal).

These dates were selected to be analyzed (May 15, June 27 and July 5) for

public housing monitor and two dates for the Virginia Schools monitor (May 30

and July 5). The average organic background on the Virginia Schools filter paper

was determined to be .0235 gm for a 24 hour period. This figure of .0235 gm, 'Jas

subtracted from the total organics observed on the public housing monitor filter

paper with the resultant organics assumed to be coal dust. The hourly wind was

then analyzed to determine how long and at what velocity the wind was blowing

from the terminal toward the Hi-Vol. Since this duration of time was established

it was utilized to compute the volume of air taken in by the Hi-Vol during the

same period of time. Using the weight of the coal dust on the paper aid the

volume of air taken in by the Hi-Vol during the time the wind was blowing in

that direction the average downwind concentration of coal dust was calculated

for the average wind during that period. In average downwind concentration was

ul r i,
22 I 9,.i 3
P.-3 ge3

develnped l'or each of thp thi-ep- (jays @,val-jated.

r)nce the avc-r%uge ritratinn was detet-iiiined, an ovorall emicsion
h
, C e S IL, 4 i;;.]
rate could I . ted for Lho f-li_..Jr,d1 as a whole by --iss_.mJiig the 2rtire
t@_--riiinal to he a surfd(--e at-ea -r-,@irc-e ,r.d us-ing the 'Saussian dis
tribution formula.
Daily observaLion of the tor;!)inal r-vnmlr@d 1-hot on the days in quus'Lion,
,-@hile the
wind was blow-irig toward the ri!ciitor, there .-4c_@re iio signifir-ant r-
oal h,@ndfling opera-
tions in progres,, 7ind that the terruin3l -missions were pi-iinarily from t-h
e coal
storage pile.

Enclosure (2) contains the calculations for the three days evaluated. The
size of the Massey coal storage area is 30 acres and the outer exti-efliities
of the
piles bear 230' T clockwise through 270' T. Tiie center of the area is approxi-
mately
1,780 feet (542.9ifl) from the monitor. In accor-dance with the procedure out-
litied
in Turner's lv!orkbook (page 39) the coal pile was considered a s-uare sui-fac-
e area
source with each side equal to 348.4 nieters. (30 acres = 121,406 M2; V-f 1,40
6
348.4.) A virtual point l'or a constructed source was detei-mined to be 613.86
M
ulnwind at C stability. Note: lor this c-valuation a class C stability was ass-
u-med
for all three days. Under these conditions and Turner's pi-ocedures the constr-
iictpd
sout-ce .-jould be 1156.8 meters upwind fi-oiti the monitor at ground level. A
t this
point one could solve for the lioi-izorital and vc-i-tical dispersion coeffici-
ents by
using Fiqures 3-2 and 3-3 in Turier-'s Workbook or by utilizing the approxima-
tions
in EPA Project Report No. 3311 which developed the foi-iiiulæ for et-nissions
from
Western Surface Mines. Enclosure (2) utilizes the latter approxilliations. (N
ote:
Region VI 'worked it both ways and there's no significant diffei-ence.)

Once the horizontal and ve-i-tical dispersion coefficients have Leeri deter-
iiriied the only unknown in the formula $C=Q-(17)(U)(6y)(6_z)$ is the "Q". Th
erefore,
since we know the concentration atid wind on the days in ques'Lion, it is an c
asy
matter to solve for the emission rate (Q) on that day. Having calculated the
estimated emission i-ate for each of the three days analyzed,Region VI then co
mpared
tfiese rates to the emissions calculated using the various emission formulae.
This
cor.,parison is incltjded on the bottom of page five of Enclosure (2).

As noted in this copiparison emission rates based on the formula E=1.7
(S/1.5)(365 - p/235)(f/15) from Section 11.2 of AP-42 resulted in the saine ve

r-Y

low t-ate each day even thoLigh actual observations indicated considel-able di fferences in the daily rates and much higher i-ates. The foi-mula $E=1.6U$ from Section 8 .24 of AP-42 used with Westet-n surface nine storage piles appc-al-ed to overesti mate the rate while the Regioii VI inodification of this forinula $E=.8U$ appeal-ed to Li nder-estiviate tiie rate. On the other hatid, the forniula $E=1.1U$ indicated good correla- tion with the observed rates.

As indicated earlier, the ob,,erved rates developed in Enclosure (2) were based on using C stability dispersion coefficients. More recently Region VI checked with National Weather Service concei-iiing actual stability conditions on the days in question and Ic-arned that, vjhile stability conditiois were pred ominantly C on the June 27 atid July 15, on May 15 the stability condition was D. Enclos ure (3) recalculates the emission rate on May 15 based on D stability, the obsel-ved w ind and the recorded Hi-Vol r=centration. The change from C stability to D stabil ity

j! II''. U) r, Div i sion of Cc,,, p]
S..j.:i-f!il,Pr 22, i983
Page 4

redtices the calcullcitt-d emi,,sion rAe, from 39.8 giri/sec to 27.4 qm/sec. I
t al so
u P,,e ts the ex c p- 1 1 e i I t co r re 1 a t i on i ri d i cji tl-,d i n E
iic 1 o -, u re (2) 14 hen a I 1 ca I cu I a t i on s
we r-e ba se d on C @ t,-@bi I i ty. U s i rig a c t ua 1 s to b- i I i ty I-
o rid i t i ori s a s @)bse t-ved t he
bi@,st corroliati; -n rnw appears to be di--scr@b,-,d by the forwula E@-9U. (I
ronically
enough this riot trio unl-ke the arbitrarily i,,odifif,d for:riula (E=.;@U) p
t-eviously
used by P%-yion VI.)

In sumirrary, it appears to Region VI that the forfiula given in Section 11.2
of AP-42 for fugitive emissions from wind errosion of active storaye piles is
inappropriate for short duration periods (24 hours or less). In fact, on the
same page in AP-42 vihere the formula is given there is stateiite-nt to the ef
fect
that the worse case condition for storage pile emission is a dry w-lildy day.
Therefore, unless the wind is prominent in the emission foi-mula, a worse case
condition cannot be calculated by use of the formula E=1.7 (S/1.5)(365 - p/235
)
(f/15). In section 8.24 of AP-42 the formula for emissions from Western surfa
ce
mine coal storage pile uses wind as the primary factor, but warns that the
formula should not be used for other type facilities or even different geograp
hical
4 S
locations. The validity of thf warning is ainply demonstrated in the collipar
ison
on page five of Eticlosure (2) I,,,here the eniissions estifnated by using the
foriTiula
E=1.6U are approssiinately 50', ' '' iri excess of the observed rates. Ilo,,.,,e
ver, using the
Hainpton Roads location with the type of coal normally exported ft-om this por
t,
and the iilletliodology descy-ibed in the repoi-t tiat developed the E=1.6U fo
rmula,
a inot-e appropriate foi-inula (E=.9U) was developed.

While it is realized that the Lise of only one nioritor, coupled with
approxiriations on distances and the riany assumptions used in the evaluation
, leave
a lot to be desired insofar- as a scientifically conducted eii-iission test is
concret-tied, it is never-thc-less the opitiion of Region VI that tie flci.-nu
la
E=.9U lbs best descibi-es the short terni emissions from coal storage piles
h-r/ ac r-e
at terminals in the Hampton Roads area and it's use for this purpose is hereby
recommended.

Ramon P. Minx
Director, Region VI

John Salop
Acting

RPM/JS/LWH/cf